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Abstract: A new model called Zero Inflated generalized Poisson-Sujatha distribution
(ZIGPSD) is proposed in this paper. Some characteristics of the model were derived and
the maximum likelihood method was used to obtain the estimators of the parameters
numerically. Through simulation and application to two datasets, the goodness-of-fit of the
ZIGPSD wasexamined in comparisonwith thezeroinflated Poisson (ZI P), Poissonand the
new generalized Poisson-Qujatha (NGPS) models. The results showed that the ZIGPSD
providesbetter fit compared to the other existing models considered in some cases of count
data with excess zeros.
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1. INTRODUCTION

ThePoissondistributionisgenerally considered asthestandard model for modeling
count data but overdispersion and excess zeros than expected from the Poisson
distribution arecommon problemsinmodelling count data, whichthemodel cannot
handle. Johnson and Kotz (1969) were the first to define a mixture Poisson
distribution that accounted for excesszerosinthedata(Sirichantra& Bodhisuwan,
2017). However, in some cases, overdispersion is a function of excess zero count
or none of it in the data. The count data with excess zeros are common in various
fieldslikephysical, natural, biological and social sciencesaswell asin engineering
and agriculture. Regular discretedistribution may fail tofit such dataeither because
of zero inflation or over- or underdispersion (Aryuyuen et al., 2014). There is
increased interest in zero inflated distribution to account for extrazeros, which are
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common in count data

“The zero inflated distribution assumes that the observed data are the result
of atwo-part process that generates structural zeros and a process that generates
random counts’ said Aryuyuen et a., (2014). They further expressed that the
distribution can be ssimply defined as follows:

PX = x|w) = wme(x) + (1 — w)f(x]A), (1)

where w isthe extraproportion of zeros, X isthe count variable, f(x) isthe pmf of
Xwith parameter A, and 1) (X) = 1if x= 0; otherwise 77, (x) = 0.

In this paper, we derived zero inflated generalized Poisson-Sujatha (ZI GPS)
distribution by compounding zero inflated Poisson (ZIP) distribution with Tesfay
and Shanker’s proposed “another two-parameter Sujatha distribution (ATPSD)”,
Tesfay and Shanker (2019). Some characteristics of the ZIGPS distribution and its
application are shown as well.

Therest of thispaper isorganized asfollows: in section 2thenew zeroinflated
model is presented and some characteristics of the model are derived in section 3.
The Maximum likelihood estimation (ML E) method to estimate the parameters of
the model are discussed in section 4. Simulation studies are presented in section 5
while section 6 contains the application of the model to two rea data sets. The
conclusion is presented in section 7.

2. THE ZERO INFLATED GENERALIZED POISSON-SUJATHA DI-
STRIBUTION

The zero inflated Poisson distribution having probability mass function (pmf) as
follows:

a)+(1—a))e"1, if x=
hX =)= (1—w)§e"1, if x=12,... @

where0<w <landA >0

Suppose the parameter A in ZIP distribution is a random variable and it
follows the ATPSD, such that A~ ATPS (a, £ that with the probability density
function (pdf):

/33

ID = e+ 2a

l+ar+ar’)e Py 1>0,>0a=0, (3
where Bisascale parameter and a ashape parameter (Tesfay and Shanker, 2019).
Obviously, for a = 0and a = 1the ATPSD reducesto exponential distribution and
Sujatha distribution respectively.
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Definition 1: Supposearandomvariable Xissaidto beof zeroinflated generalized
Poisson-Sujatha distribution (ZIGPSD) if:
X|A~ZIP(A)

while Ala, B ~ ATPSD(a, B)

for A>0, B> 0and a = 0. Hence, we denote the pmf of X ~ ZIGPS(q, B, @is
given by:
h(X =0)g(), if x=0
feo = {(1 — (X = Dgd) if x=1,2,... (4)
where, 0 < w < 1 istheinflation parameter.
Theorem 1: If X~ZIGPYa, B, ¢ beaZeroinflated Generalized Poisson-Sujatha
distribution, then the pmf is:

B aB+3)+ (B2 +26+1) if x=
) w+(1_w)ﬁz+aﬁ+2a< B+1)° ) S
fe) = B aGf+ B+ +BrMax+ (FEH2E+ D) ©)
(-0 g eaal R )t e

where 3>0,a 20and0< w < 1.

Proof of part 1: [if X = 0]: Suppose X|A ~ZIP(A) and A|B, a~ATPSD (B, d
then the pmf of conditional random variable X is given as:

k) = f h(X = 0)g(D)da,
0

where w + (1 — w)h(X = 0) is ZIP when x = 0 and g(2) is ATPSD. Therefore,

f1(x) :f(u+(1—a))e‘Z

0

‘B3

m(l +al+ 6{)[2) e_ﬁld/l

=w+(1-w) “AEAD (14 gl + ad?) di

53 [
(B2 +a,8+2a)0f ¢

[e3]

J

0

33

=wt (-0 s

e B+ g +af Ae~HED g3 +af A2e~AE+D) dl]
0 0
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B3 0! a 2a
VT af + 20) [(ﬁ Tt TG 1)3]

B3 a(B+3)+(B2+26+1)
(p? +aﬁ+2a)[ B+1)3 ]

=w+(1-w

=w+(1-w)

aB+3)+ B+ 1)

B3 )
(B% + af + 2a) [ Br1? if x=0 (6

) =e+(1-w)

Proof of part 2[if X=1]: Suppose X|A ~ZIP(A) and A| B, a~ATPSD (3, o) then
the pmf of conditional random variable X is given as:

[oe]

£,(x) = f 0+ (1= w)h(X = Dg)di,

where w + (1- w) h (X=1) isZIPwhen x>0 and (g)A) iSATPSD. Therefore,

* AX 3

fo(x) = Of(l—w);e"l.ﬁz_’_ﬁw(l+al+alz) e Plda

=(1- w)'g—3f MeHB+D (1 + ad + ad?) di

x!(ﬁ2+a’ﬁ+2a)0

— ﬁg Oc)x—(+) Oox+ -A(p+1) Oox+ —-2(f+1)
—(1—w)mof,1e““ d/1+a0f,1 1g-A(B+1 dl+a0fl 2=2B+1) 4

-1 B3 x! a(x+ 1! alx+2)!

=0 T |G T G (5+1)X+3]

1 B3 1 alx+1) alx+2)(x+1) (7)

= g |G TGt G e

p3 a(x>+B+3)+ (B +Hax + (B +1)?
B? + af + 2a) [ (B + 1)x+3

=(1-w)

12, ..,

2 (0 = (1 - w) B (oz(x2 +B+3)+(B+Dax+(B+ 1)2>; o

B2+ aB +2a) B+ 1)*+3

where 0< w< 1, > 0 and a = 0. Therefore, the full pmf of ZIGPSD is
_{ fi(0), if x=0

f(x)_{fz(x), if x=1,2,...

That is,
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B a(B+3) + (B +1)? if x =
. w+(1—w)ﬁz+a[;+2a( (B +1)3 > ya=o
fG) = L B? a@f+p+N+ B+t Dax+F+HY
( _w)ﬁ2+aﬁ+206< (B + 1)x+3 >, if x=1,2,...

Note that when w = Oequation (5), reduces to new generalized Poisson-Sujatha
(NGPS) distribution devel oped by Aderoju (2020).

Probability massplotsof ZIGPSdistribution for particular valuesof w, aand 8 are
givenin Figure 1 below.
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Fig. 1: The pmf of ZIGPS distribution with specified parameters
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3. MATHEMATICAL PROPERTIES

Therth factorial moment E[(X),] of the zero inflated generalized Poisson-Sujatha
distribution with random variable X; if isgiven as:

3 < b 2x
tr = /ﬁfwj (1-w) Z [(x)r;e"1 ] (1 + at + ar?) e~Fida
0 x=1
3 v > Ax-T
= Bz_}_fw-f (1 — )2’ Z [(x)r T ] (1+ad+a2*) e7Ftda
0 x=1

Note that (X), = X(X — 1)(X — 2) --- (X — r + 1), therefore,

ﬁ3 < i Ax-T
" _ r§ -1 2y ,—BA
Uy ,82+a,8+2a,[(1 w)A 1[(x—r)!e ](1+a/1+0(/1)e di
0 x=

Let z=x—r,

' r A 2y ,—B2
DTS m (1—a))/1 Z[—'e ](1+a/1+a/1)e da
_1 '
/‘lZ
Z —'e')‘] =1, therefore,
Lz
ﬁB

u = (1-w) f A1+ al+ ar?) e Brda
0

B? + af + 2a
a(r+ 1) al(r+2)!
(ﬁz + a,ﬁ + 20,’) [Br+1 + ,BN'Z + Br+3

B3 : 1 a(r+1) a(r+2)F+1)
(ﬁz _+, aﬁ _+_ Za) r. ﬁ?""’-l + ‘8T+2 + ﬂr+3 :|

=(1-w)

=(1-w)

, B>+ alr+ (L +71+2) B
ur—(1~a))r![ BT alf +2) , r=12,. .. (8)
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To obtain the corresponding rt" factorial moments for the proposed distribu-
tion, thevaluesof r =1, 2, 3, ... will be substituted into (8). Below are results of
the first four moments of this distribution. When r =1, 2, 3,... and 4:

B? + 2a(f + 3)

m=0=0) g 2)
L 2[B% + 3a(f + 4)]
=00 e By a(p 1 2)
CZ 6[82 + 4a(f + 5)]
M=) T ap  2a)
(1 24[B? + 5a(B + 6)]
He= (=) s BT B 1 20)

Hence, the variance (o?) of the distribution is obtained as:

of =pp— ()*
+i

W) (B2 + a(B + 2)[2(8% + 3a(B + 4)) + F(B? + 2a(B +3))] — (1 — w)(B? + 2a(B + 3))°
¢ BB+ a2+ B))

The coefficient of variation is given as

=

cv
J(1 — @) [(87 + a(B + D)[2(8 + 3a(B + ) + BB +20(B +3))] — (1~ w)(B? +2a(8 +3))']
(1 — w)(B% + 2a(8 +3))
The probability generating function (PGF) of the distribution can be
expressed as follows:

[0]

() = ) ¢ f)
x=0
B3 B+1-t)+aB+1-1t)+2a 9)

=w+(1_w)ﬁ2+aﬁ+2a (B+1-1t)3

ThisPGF canalso beusedto obtain moments. For exampl e, thefirst momentis
givenas n, (t =1), where
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;o Anx (0 1-2t+2B+t2—=2tB+ B2 +2a(4—t+B)

nx(t)——dt —(1—a))< G+ 105"+ af + 2a) )

Hence, _ .. __ 9@ _ ~  B*+2a(f+3)
u=nxt=1=—7 t:l_(l w)ﬁ(ﬁ2+a([3+2))

as obtained earlier.

4, MAXIMUM LIKELIHOOD ESTIMATESOF THE PARAMETERS
The likelihood function of the ZIGPSD is:

n

Llw,a,B) =1_[[w+(1—w)

B3 (a(ﬁ +3)+ B2+ 28+ 1))]

L B*+apf +2a B+13
1
ot (10)
B3 a(x?+B+3)+ (B +Dax, + (B2+28+1D)
— cu) Bz + aﬁ + 20[( (ﬁ + 1)xi+3 >]

The log-likelihood function of the ZIGPS(a, 8, ¢ can be expressed as follows:

C B a(B+3)+ (B2 +28 +1)
L=;log[w+(1—w)B2+aﬂ+2a< )]

(B +1)3
+ l 1
Z " [( (11)
B3 a(x?+B+3)+ B +Dax; + (B2 +2+1)
—w) B2+ af + 2a< (B + 1)xit3 )]

Theestimatesof the parametersinthenonlinear equation (11) canbeobtained
by numerical optimization using “optim” or “nlm” functionsin the R software (R
Core Team, 2021).

5. SIMULATION STUDY

In this section, a simulation study to examine the goodness-of-fit performance of
theZI GPSispresented. A maximumlikelihood estimation schemewasimplemented
within the R environment to carryout model fitting for the ZIGPS model. The
ZIGPSiscompared with the Poisson, ZI P and NGPSdistributions. The assessment
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is done under various settings of sample sizes and proportion of excess zeros. All
simulations were carried out in the R environment.

51SIMULATION SETTING
The simulation settings for the three cases considered are defined as follows.

Case 1. The data are from a Poisson distribution with parameter A. We
considered cases of A =5, 50at sample sizes of n = 20, 50, 200.

Case 2: Thedata are from a ZIP distribution with parametersA=10and w =0.1,
0.2, 0.50,8. We considered sample sizes of n = 50, 200.

Case 3: Thedataarefrom aZlGPS distribution with parameters a = 0.03, 3=0.8
and w=0.1, 0.2, 0.5, 0.8. We considered sample sizes of n = 50, 200.

52 SIMULATION RESULTS

The performance of the methods were evaluated over 100 replications of each
case discussed above. The evaluation criteria are: Loglikelihood (Loglik),
Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). TheAlCand BIC aredefinedasAIC = -2L + 2p and BIC = -2L + p(log
n), where L istheloglikelihood, p isthe number of parametersto be estimated
for the model and n isthe number of observations. Tables 1-3 summarizes the
means of Loglik, AIC and BIC over 100 replications. It should be noted that
higher Loglik and lower AIC and BIC indicate better fit (Hastie, et al., 2001,
Adeniyi et al, 2018).

Table 1 presentsthe resultsfor case 1 where the data are Poisson distributed.
Theresultsindicate that at A= 5, the performance of Poisson and ZIP are similar
across all the sample sizes considered. The performance of the ZIGPSisthe least
as expected since the data do not contain excess zeros.

Theresultsfor case 2, wherethedatafollow theZI Pdistribution, arepresented
in Table 2. Under this setting, the ZI P produced the best performance followed by
the ZIGPS across the various levels of excess zeros and sample sizes. The least
performance, as expected, was produced by the Poisson distribution as the data
were zero-inflated.

Table 3 presentsthe resultsfor case 3, where the generated data are from the
ZIGPS distribution.
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Tab. 1: Meansof for Loglik, AlC and BIC over 100 replications for Poisson distributed

data (CASE 1).

n A Model Loglik AIC BIC
Poisson -43.95 89.90 90.89
5 Al -43 .81 91.62 93.61
NGPS -48.07 100.14 102.13
20 ZIGPS -48.20 102.40 105.39
Poisson -67.28 136.56 137.55
50 ZIP -67.28 138.56 140.55
NGPS -87.42 178.84 180.83
ZIGPS -92.94 191.89 194 .88
Poisson -109.27 220.54 22245
5 Al -109.16 222.32 226.14
NGPS -120.31 244.62 248.45
50 ZIGPS -120.36 246.71 252.45
Poisson -167.94 337.87 339.78
50 Z1P -167.94 339.87 343.70
NGPS -218.30 440.60 444,43
ZIGPS -232.77 471.54 477.28
Poisson -441.32 884.65 887.95
5 Z1P -441.05 886.11 892.70
NGPS -482.28 968.57 975.16
200 ZIGPS -482.46 970.91 980.81
Poisson -675.08 1352.16 1355.46
50 Z1P -675.08 1354.16 1360.75
NGPS -873.39 1750.77 1757.37
ZIGPS -969.52 1945.04 1954.94
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Tab. 2: Meansof for Loglik, AIC and BIC over 100 replicationsfor Zero-inflated Poisson

(ZIP) distributed data (CASE 2).

n w Model Loglik AIC BIC
Poisson -160.49 322.98 324.89

0.1 ZIP -130.54 265.08 268.9
NGPS -151.08 306.17 309.99

ZIGPS -147.57 301.13 306.87

Poisson -188.11 378.22 380.13

0.2 ZIP -127.21 258.41 262.24
) NGPS -150.74 305.49 309.31
50 ZIGPS -142.16 290.32 296.06
Poisson -234.73 471.46 473.37

0.5 ZIP -98.03 200.05 203.88
) NGPS -133.59 271.18 275.01
ZIGPS -108.30 222.61 228.34

Poisson -182.87 367.74 369.65

0.8 ZIP -50.23 104.45 108.28
) NGPS -92.65 189.30 193.13
ZIGPS -57.74 121.48 127.22
Poisson -649.59 1301.18 1304.47
200 0.1 ZIP -524.88 1053.77 1060.36
NGPS -605.85 1215.69 1222.29

ZIGPS -591.02 1188.03 1197.93
Poisson -766.26 1534.52 1537.82
0.2 ZIP -510.97 1025.93 1032.53
) NGPS -604.16 1212.32 1218.92
ZIGPS -568.17 1142.34 1152.24
Poisson -944 .54 1891.07 1894.37

0.5 ZIP -395.70 795.41 802.00
) NGPS -535.13 1074.26 1080.86
ZIGPS -433.96 873.92 883.81
Poisson -745.72 1493 .45 1496.74

0.8 ZIP -202.37 408.73 415.33
) NGPS -376.10 756.20 762.80
ZIGPS -235.75 477.5 487.39
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Tab. 3: Meansof for Loglik, AlC and BIC over 100 replicationsfor Zero Inflated
generalized Poisson-Sujatha distribution (ZI GPSD) distributed data (CASE 3).

n w Model Loglik AIC BIC
Poisson -91.60 185.20 187.11
0.1 ZIP -82.07 168.14 171.96
) NGPS -78.90 161.80 165.62
ZIGPS -78.36 162.71 168.45
Poisson -90.08 182.16 184.08
0.2 1P -77.23 158.46 162.28
) NGPS -75.02 154.05 157.87
50 ZIGPS -73.59 153.19 158.92
Poisson -73.42 148.83 150.74
0.5 ZIP -56.27 116.55 120.37
) NGPS -59.03 122.07 125.89
ZIGPS -54.61 115.23 120.96

Poisson -43.87 89.74 91.66

0.8 ZIP -28.90 61.81 65.63
) NGPS -35.08 74.16 77.98
ZIGPS -28.35 62.71 68.44
Poisson -373.29 748.57 751.87
0.1 ZIP -332.34 668.67 675.27
) NGPS -320.03 644.06 650.66
ZIGPS -318.57 643.14 653.04
Poisson -358.67 719.34 722.64
0.2 ZIP -310.75 625.5 632.09
) NGPS -300.47 604.94 611.53
200 ZIGPS -296.97 599.94 609.84
Poisson -294.83 591.66 594.95
0.5 ZIP -229.11 462.22 468.81
) NGPS -236.72 477.44 484.04
ZIGPS -220.71 447.42 457.32

Poisson -171.65 3453 348.6
0.8 ZIP -114.04 232.09 238.69
) NGPS -138.09 280.18 286.78
ZIGPS -110.83 227.66 237.55

6. APPLICATIONSTO REAL LIFE DATASETS

To examine the goodness-of-fit of the ZIGPSD in modelling zero inflated as well
as overdispersed count data sets, we use two real data sets. The first datareferred
to the counts of cysts from 111 steroid-treated kidneys (McElduff, et al., 2010;
Kumar & Ramachandran, 2019) while the second data were the number of
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Mammalian Cytogenetic dosimetry Lesions in Rabbit Lymphoblast induced by
lymphoblast streptonigrin (NSC-45383), exposure- 60 ug/kg provided by Shanker
and Fesshaye (2016). The model evaluation in this section was based on the chi-
squared (x?) goodness of fit test to compare between observed (O,) and expected
(E;) values of dataaswell asthe AIC and BIC:

V2 = s}' ._
where pisthenumber of parametersandisthenumber of classesafter thedatahave
been grouped into a frequency distribution.

The observed mean and variance are 1.486 and 7.07027 respectively, which
indicate presence of overdispersion. Moreover, the expected zero countsinthedata
are 25, that is, 111 x 1486 = 25,104 while there are 65 zeros in the data, which
indicate presence of excess zero. With these evidences, it is clear that the Poisson
model is not appropriate for this data set.

Going by the rule proposed by Lawal (1980), that expected value can be as

small as # (whereristhenumber of expected valueslessthan 3and disthedegree

of freedom under such model) without violating the X? assumption. Hence, the
minimum expected values required from the ZIGPSD for this dataset 1 will be

;
7 =0.2592; only 7 expected values are less than 3 and the degrees of freedom df

= 9 Hence, since there is no expected value less than 0.259, there is no need to
collapse cells. However, the minimum expected values from Poisson, ZIP and
NGPS distributions are 0.2192, 0.1897 and 0.2214 respectively. Therefore, cells
less than the values were collapsed as shown in Table 1 and the degree of freedom
adjusted appropriately.

Based on the computed values of X2 statistic given in Table 4, it is obvious
that the ZIGPSD fitsthe datawell (p-value=0.7675) while ZI P (pvalue < 0.0001)
and NGPS (pvalue < 0.0001) distributions failed to fit the data at 5% significant
level. It isworthy of note that Kumar & Ramachandran (2019) fitted zero inflated
Hermite(ZIH), zeroinflated generalized Poisson (ZI GP), Negative Binomial (NB)
and zero inflated Negative Binomial (ZINB) distributions among others to this
same dataset. Their results showed that even ZINB distribution failed woefully at
fittingthedata, only ZIH distribution slightly fit at 5% level of significance(having
pvalue = 0.0914).
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Tab. 4: Observed and expected frequenciesfrom fitted modelsto thetwo data set on counts

of cystsfrom 111 steroid-treated kidneys

X Observed | Poisson ZIP NGPS ZIGPS
(count) Freq.
0 65 25.1 65.0 453 65.0
1 14 373 5.1 26.4 13.1
2 10 27.7 8.9 15.6 9.2
3 6 13.8 10.3 9.3 6.6
4 4 5.1 8.9 5.6 4.7
5 2 1.5 6.2 3.4 3.4
6 2 0.4 3.6 2.1 2.5
7 2 0.1 1.8 1.3 1.8
8 1 7.1=400 0.8 0.8 1.3
9 1 0.0 0.3 0.5 1.0
10 1 0.0 04=101 03 0.7
11 2 0.0 700 0.7 =10.2 0.5
12 1 0.0 0.0 0.2 1.2
Total 111 111 111 111 111
MLE A =1.4865 1 =3.4760 @ =0.0311 @ = 0.0263
B = 0.5724 £ =08074 £ =05280
D = 04162
Loglik -263.2722 -191.866 -184.8609 -172.8206
X2 104.8565 76.6887 35.0950 5.720
(P-value) (<0.0001) (<0.0001) <0.0001 (0.7675)
dr 3 7 7 9
AIC 528.5444 387.7321 373.7219 351.6413
BIC 526.5444 383.7321 374.6917 359.7699

Tab. 5: Observed and expected frequenciesfrom fitted modelsto the data set on number of
Mammalian Cytogeneticdosimetry L esionsin Rabbit L ymphoblast induced by

streponigrin (NSC-45383), exposure - 60 ug/kg.

X Obs. Freq Poisson 1P NGPS ZIGPS
(count)
0 413 374.0 413.0 408.6 413.0
1 124 177.4 116.0 130.1 124.1
2 42 42.1 52.1 42.0 4.1
3 15 6.6 15.6 13.7 14.4
4 5 0.8 3.5 4.5 4.9
5 0 0.9=40.1 0.6 1.5 1.7
6 2 0.0 0.2 0.6 0.8
Total 601 601 601 601 601
MLE 1=04742 1=10.8990 @ =0.1472 & = 0.2514
» = 04725 B = 24154 B = 24160
o = 0.0702
Loglik -582.6775 -559.5806 -556.4111 -556.1823
X? 72.1766 19.9756 0.5171 3.5273
(P-value) (<0.0001) (0.0005) (0.2598) 0.3172)
df 3 4 4 3
AIC 1167.355 1123.161 1116.822 1112.365
BIC 1169.247 1119.161 1116.406 1112.365
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The observed mean and variance are 0.4742 and 0.7397 respectively, which
indicate presence of overdispersion. Moreover, theexpected zero countsinthedata
are 374, that is, 601 x e94742= 374 while there are 413 zeros in the data, which
indicate excess zeros. With these evidences, it is clear that Poisson model is not
appropriate for this second data set.

Similarly, based on the values of X2 statisticin Table 5, the results shown that
ZIGPSD (with pvalue = 0.3172) and NGPSD (pvaue = 0.2598) fits the data well
while Poisson (pvalue < 0.0001) and ZIP (pvalue = 0.0005) distributions failed to
fit the data at 5% level of significance.

Moreover, the minimum expected values required from the ZIGPSD for this

dataset will be % = 0.3849; only two expected values are less than 3 and the

df = (7-3-1) = 3. So, there is no need to collapse cells except for Poisson model -
where we collapse cells X =4, 5 and 6.

7. CONCLUSION

In this paper we proposed the zero inflated Generalized Poisson-Sujatha (Z1 GPS)
distribution and derived some of its mathematical characteristics. Maximum
Likelihood Estimates of the parameters through direct maximization of the log-
likelihood functionisproposed andimplemented numerically usingthe R software.
A simulation study was used to examine the goodness-of-fit performance of the
ZIGPS distribution. Results from simulation study revealed that the ZIGPS -
distribution is a good aternative for modelling count data with excess zeros. ) =
Application of themodel wasmadetotwo real datasets. It hasal so been shownthat
the proposed model fitsthe two data setswell at 5% significant level. Note that the
model performs extremely well in the two data sets, which makes it a model to
reckon with in modeling zero inflated count data that is highly overdispersed. R
codes used in this work are available on request from the authors.
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