
Statistica Applicata - Italian Journal of Applied Statistics Vol. 34 (1) 97

1 Corresponding author: Rossella Berni, email: rossella.berni@unifi.it

doi.org/10.26398/IJAS.0034-004



98 Berni R., Piattoli L., Anderson-Cook C.M., Lu L.



Split-plot designs and multi-response process optimization: … 99

2.  SPLIT-PLOT DESIGNS FOR STATISTICAL QUALITY CONTROL:
A REVIEW
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2 Please note that we are referring to a factor/variable considering that the experimental region
χ is defined by the factor ranges; a finite number of experimental points, forming the
experimental design, is then selected by the experimental region. Following, the model
estimation is performed within the whole experimental region, by inferring from a discrete set
of points, e.g., the experimental points, to a continuous one.
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3.1. THE PARETO FRONT APPROACH
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3.2.  THE ANALYTICAL METHODS FOR A ROBUST PROCESS
OPTIMIZATION
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4. THE CASE STUDY: DATA DESCRIPTION AND PROCESS
OPTIMIZATION
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4.1.  SPLIT-PLOT DESIGN AND DATA DESCRIPTION

Fig. 1: Location of the frustum of cone by three circles and definition of the “circle-point”
factor
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Fig. 2: Input grid plot
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 Fig. 3: Pairwise scatterplots of the points belonging to the Pareto front
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Fig. 4: Mixture plot
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Fig. 5: Trade-off plot of the 41 best point combinations for at least one weight combination

Tab. 1: Factor levels and predicted response values for the combinations 1723 and 1744

Combination
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 Fig. 6: Synthesized efficiency plot for the point combinations 1723 and 1744

3 It should be noted that for the construction of the synthesized efficiency plots (Figure 6) and
the mixture plot (Figure 4), a set of 20301 weight combinations has been defined, where
adjacent weights related to a same response variable are separated by a distance equal to 0.005.

combinations 1723 combinations 1744

x x
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Tab. 2: Optimization results: the comparison
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Tab. 3: Theoretical step comparison between the Pareto front approach and the analytical
method

Step Method
            Pareto front        Analytical

1 DoE: planning and trials DoE: planning and trials
2 Statistical modelling Statistical modelling
3 Optimization: Optimization:

A) objective phase - identification of
Pareto-optimal set;

B) subjective phase - choice of the
optimal solution among the points
belonging to the Pareto-optimal set,
taking the quantitative results and
the decision-makers’ priorities into
account;

C) validation of the results obtained at
step (B), intrinsic in the subjective
phase.

a) definition of objective function (formula
(4));

b) minimization (or maximization) of the
objective function, and identification of
the optimal solution (optimal process
variable levels);

c) validation of the obtained results at step
(b) by: 1. the objective function value,
(results also checked through:
convergency, gradient estimates,
determinant of the Hessian matrix); 2.
application of the optimal solution
(obtained through step (b)) in the real
(actual) production process, by involving
the stakeholders (engineers).

It is important to note, however, that although a Pareto front can be
constructed for any number of responses of interest, the graphical tools
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