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Abstract: Nowadays split-plot designs play a crucial role in technological fields, both
for their flexibility when applying a robust design approach and in relation to the
modelling step, by considering mixed Response Surface models and/or the class of
Generalized Linear Mixed Models (GLMMs). In this paper, a split-plot design is studied
in a process optimization scenario involving several response variables, a multi-
response situation, where two optimization methods are compared. More precisely, by
considering a real case study related to the improvement of a measurement process of a
Numerical Control machine for measuring dental implants, the optimization is carried
out with the Pareto front approach and then compared with an analytical optimization
method obtained starting from the definition of a risk function. In the final discussion
advantages and disadvantages of application for both methods are evaluated.
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1. INTRODUCTION

Process optimization is a key issue for statistical quality control, and its
relevance has increased since the long and fruitful scientific debate related to
Taguchi’s two-step procedure for robust design (Nair, 1992). Currently, the
robust design approach involves three key-steps: experimental design,
modelling, and optimization. For a successful implementation, it is important to
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involve noise factors starting from the experimental planning, and then
modelling them through a suitable analysis in the subsequent optimization
phase. Therefore, the concept of process optimization is extended to robust
process optimization, where control and noise variables are jointly studied to
attain the best set of control factor levels that simultaneously achieves the target
value and minimize the process variability with a robust configuration. In this
context, the process optimization strictly depends on the designed experiment
and on the class of statistical models applied. Specifically, Response Surface
Methodology (RSM) approaches (Myers et al, 2016) may be used, or,
alternatively, an experimental design may be planned outside the RSM context,
modelling the experimental data with a more flexible class of statistical models,
e.g. Generalized Linear Models-GLMs (McCullagh and Nelder, 1989; Nelder
and Lee, 1991; Lee and Nelder, 2003) or Generalized Linear Mixed Models-
GLMMs (Dror and Steinberg, 2006; Robinson et al., 2006; Berni and Bertocci,
2018).

Undoubtedly, the two choices of experimental design and modelling are
related to what is known about the process to be studied and optimized; the
same line of reasoning should be applied when deciding on which, how many,
and the type of response variables have to be considered. In fact, the multi-
response situation should be evaluated when the real scenario shows that several
response variables are naturally involved, and they are important to the overall
process under study. If this is not the case, then a simpler choice should be used,
since collinearity, often present among responses (Box et al., 1973; Chiao and
Hamada, 2001), can lead to serious complications both in analysis and
optimization.

Moreover, in a multi-response situation, the optimization step is crucial,
since it is generally not feasible in practical terms to reach an ideal optimum
simultaneously for all the responses. In literature there are several methods for
achieving optimal solutions as a compromise among several response variables,
including Derringer and Suich (1980), Khuri and Conlon (1981), Del Castillo et
al. (1996), Copeland and Nelson (1996).

A further issue concerns the conjunction of a multi-response case and the
dual response approach. The simultaneous optimization of several variables,
jointly with the consideration of two statistical models, e.g., location and
dispersion, complicates the analysis and interpretation of results. Indeed, we
should make a distinction when considering the differences between the dual
response approach, or, alternatively, when a single response model, opportunely
weighted with respect to the estimated dispersion values, is applied in a “true”
multi-response case. In the latter case, the application of analytical methods for
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optimizing can give fruitful and satisfactory results, particularly by considering
recent developments involving noise factors.

To this end, several optimization measures are suggested in the literature
(Lin and Tu, 1995; Tang and Xu, 2002). The Pareto front approach is a multi-
response optimization method of the analytical-qualitative type, consisting of
two sequential steps: a first step based on objective conditions identifies the
dominant solutions, and a second step based on examining the identified
alternatives and then selecting the best solution conditions that subjectively
match the experimenters’ priorities (Lu et al., 2011; Chapman et al., 2014a).

In this paper, data from a split-plot experiment (Berni, 2010) are optimized
through the Pareto front approach (Chapman et al., 2014b), and following, the
results obtained are compared with a proposal of the analytical optimization
method. More specifically, both methods are compared and discussed through
an empirical example in the orthodontic field, in order to improve the accuracy
in the measurements of a Numerical Control (N/C) machine, which provides
some automatic control of machining tools.

This paper is structured as follows: in Section 2, the basics of split-plot
designs are reviewed and briefly illustrated. Section 3 provides a short
description of both optimization methods, and Section 4 presents the case study
including optimization results. The paper ends with a general comparison
between the two approaches, and final remarks.

2. SPLIT-PLOT DESIGNSFOR STATISTICAL QUALITY CONTROL:
A REVIEW

The split-plot design (Cochran and Cox, 1957) has been developed and
characterized over the years, proving to be an experimental design widely used
in industrial, technological, and environmental fields, because of the need to
restrict randomization on expensive or hard-to-change factors in the experiment.

By considering the developments that the fractional factorial and RSM
designs, and modelling have had since the 1980s, the split-plot design has
experienced a particular renewal (Box and Jones, 1992), expounding its
theoretical features, specific usefulness for the statistical quality control and
robust design concepts, initially introduced by Genichi Taguchi, (Nair, 1992). In
this context, the two seminal papers of Vining and Myers (1990) and Myers et
al. (1992) extended the two-step procedure into the dual response approach, and
the combined-array is considered as a milestone for recent developments and
robust process optimization. Within this methodological framework, the split-
plot design plays a central role, starting from the tutorial by Box and Jones
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(1992), in which the authors proposed the split-plot design as an efficient
alternative in many experiments, for example with hard-to-change factors, to
Taguchi’s product-array for a robust design approach, and also in a fractional
factorial setting (Bisgaard, 2000).

Recently, split-plot designs have great relevance for the latest developments
in robust process optimization, extending the initial concept of the robust design
approach, with a focus on the design and modelling steps (Kowalski and
Potcner, 2003; Kowalski et al., 2007; Jones and Nachtsheim, 2009). More
recently, the split-plot design has been revised and included in the class of
crossed bi-randomized experimental designs (Myers et al., 2016), given the
possibility of including environmental/noise factors as Whole-Plot (WP) factors
and process factors as Sub-Plot (SP) factors. The standard allocation of the
environmental/noise factors as WP allows for the most accurate estimate of the
factors of interest, as well as the estimate of the 1* order interactions, e.g., the 1%
order interaction between a WP factor (for example a noise factor) with a SP
(process) factor, in order to perform a robust design (Berni and Nikiforova,
2022). This structure is common in many applications, given the generally high
cost of controlling the noise factors in production.

Nevertheless, a split-plot design in a RSM context generally requires that
all the variables included in the experimental plan (irrespective of whether WP
or SP factors) must be quantitative in nature. In fact, in case of a qualitative
process variable, the optimization step is conditioned to the levels of the
categorical variable involved. To this end, the inclusion of a qualitative variable
should be limited (Berni, 2010) or restricted to two levels where they can be
treated as quantitative in standard models. Moreover, the presence of
measurable noise factors, involved as random effects, is possible when the split-
plot design is applied through mixed Response Surface (RS) models, or
alternatively, through GLMMs.

Additional developments in the literature have contributed significantly to
the inclusion of the split-plot design in RSM, showing the equivalence of
Ordinary Least Squares (OLS) with Generalized Least Squares (GLS) for split-
plot designs and mixed RS models (Vining et al., 2005); and improving
inference issues (Vining and Kowalski, 2008).

2.1. THEORY ABOUT THE SPLIT-PLOT DESIGN

When implementing a split-plot design, it is essential to begin with a
primary classification between WP factors and SP factors. It is therefore
desirable to carefully evaluate what is possible in the experimental set-up for the
specific process (industrial process, laboratory experiment) under study,
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considering the exact definition of the response (quantitative) variables. Also, it
is necessary to define the role of each variable in the study, in order to plan the
split-plot design based on the most efficient arrangement for the specific
scenario. This step plays a central role, not only in the attribution of factors as
whole-units or sub-units, but also determines the subsequent model estimation,
in which each variable plays a specific role, according to its nature (qualitative,
discrete quantitative or continuous). It is also a crucial point to clarify the
distinction between fixed and random effects.

In short, a Whole-Unit (WU) is defined by runs involving the set of WP
factors, and the run order of all the WUs is randomized. Subsequently, the Sub-
Units (SUs), defined through the combination of levels (runs) of the SP factors
within the WUSs, are associated with a particular WU and randomized
separately.

In this study, we consider a split-plot design in a RSM context. More
precisely, we are interested in applying a standard second-order polynomial
model with random effects. The model with random effects for the single
experimental observation y, (u =1,...,n) and J variables (xy, ..., X}, ..., X;) is
(Khuri, 1996):

Yu = BO + f’(xu)ﬁ + Z;ﬂ' + g’(xu)AZu + &y (1)

where f is the intercept; f = (,81, ...,Bp)’ is the column vector [px1] of the
unknown fixed parameters (p = J); x, = (xul, e Xy ) ...,xw)’ is the vector of
design settings at the u-th experimental run; f(x,) is a vector function of
dimension [px1] defined for each x,, and related to the p second-order effects
for the J variables. Therefore, F is the so-called "extended" matrix of dimension
[nxp], formed by the n rows f'(x,); &, is the residual error. For the random
effects, z,, = (zy1, .., Zyp)' is the vector of binary values (0,1) to describe the
presence and structure of the block factors; ¥ = (¥4, ..., ¥p)" is the column
vector [bx1] of the unknown coefficients relating to the random effects. The
matrix A characterizes the 1% order interactions between polynomial effects (fixed)
and random effects. The maximum dimension of A is achieved if the
interactions of all fixed effects with random effects are included in model (1).
Note that this matrix contains the key estimated coefficients for evaluating the
robust design as the control-by-noise interactions that can be exploited to
achieve robustness.

Starting from the model expression (1), the second-order polynomial model
of response surfaces from a split-plot design is outlined, considering quantitative
variables only. For further details, see Myers et al. (2016).
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Let’s consider two sets of factors: z = (24, ...2;, ..., Z;) are WP random
factors/variables and x = (xy,..%j,..,Xx;) are SP variables/factors.’
Furthermore, let y,, be the u-th observation of the k-th block, for the i-th WP
factor and the j-th SP factor respectively (i = 1,..,1;j =1,..,;k =1,..,K);
therefore, the second-order mixed RS split-plot model for a single replicate
(K = 1) and a single observation u is defined as follows:

yu(z, %) = Bo + ziy + 2Tz, + x[;B + x[;Bx;; + z;Ax;; + P, + &, (2)

where B, is the intercept; z; = (z;4, ..., Ziy, ..., Zin)' is the vector of the i-th WP
factor; ¥ contains the unknown coefficients of linear terms of the WP variables;
T is the array related to the coefficients of the 1™ order interaction and quadratic
terms of the WP variables; xX; = (le, ever Xjys v xjn)’ is the vector of the j-th SP
factor; B contains the unknown coefficients of linear terms of the SP variables;
B is the array containing 2"® order coefficients for the fixed effects of SP
variables; the matrix A, contains coefficients of the 1 order interaction effects
between the WP and SP factors. The model terms in the matrix A are of primary
interest in the context of robust design evaluation. Regarding the two error
components, ¥, is the WP error component and &, is the SP error component,
where in general the two error components are assumed to be independent and
identically Normally distributed, i.e. ¢~ iid N(0,05) and e~ iid N(0,02),
respectively. In addition we also assume that Cov(y, &,) =0 vu. The
assumptions about the error variances and covariances are equivalent to assume
constant covariance between two observations belonging to the same WU,
across all its observations.

In the case study illustrated in Section 4, the multi-response case is related
to the optimization involving three split-plot models, one for each response,
estimated applying the RSM model above.

3. OPTIMIZATION METHODS

This Section includes a short description of both optimization methods
considered. The Pareto front approach (Lu et al., 2011; Chapman et al., 2014a;
Chapman et al., 2014b) is also illustrated within the case study, considering the
application (Subsections 4.2 and 4.3); a brief introduction of the analytical

2 Pleasenotethat we are referring to afactor/variable considering that the experimental region
X is defined by the factor ranges; a finite number of experimental points, forming the
experimental design, is then selected by the experimental region. Following, the model
estimationis performed withinthewhol e experimental region, by inferring from adiscrete set
of points, e.g., the experimental points, to a continuous one.
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method is illustrated in Subsection 3.2. For further details see (Berni and
Gonnelli, 2006; Berni, 2010; Berni and Burbui, 2014).

3.1. THE PARETO FRONT APPROACH

The Pareto front approach is a multi-response analytical-qualitative
optimization method, which allows the search for optimum to take subjective
priorities and constraints into account, such as those due to a company’s
requirements (for example, costs or technical/engineering specifications). It
consists of two sequential steps (Chapman et al., 2014a; Myers et al., 2016;
Anderson-Cook, 2017), as outlined below.

Suppose that y defines the entire experimental region; within this region a
finite set, possibly a grid, of points, is selected and used to estimate the
responses of interest and used to define a Pareto-optimal set. A possible solution
is called non-inferior (or Pareto-optimal), if and only if, there is no other
combination within the set for which the values of all the responses are at least
as good, and the value of at least one response is strictly better; otherwise, the
solution is called inferior or dominated. The set of non-inferior (or Pareto-
optimal) input combinations is called the Pareto-optimal set, and the
corresponding set of vectors for the responses under consideration is known as
the Pareto front or frontier. Since the inferior solutions are not rational choices
conditional on the choice of responses under consideration, they are not
considered further and definitively discarded (Zitzler, 1999; Marler and Arora,
2004; Coello Coello et al., 2007). This leads to a reduced number of alternative
solutions to be considered further in later stages of the optimization.

The Pareto front approach can be summarized with the following two steps:

1. An objective step, where the Pareto-optimal set is identified from the
initial set of choices, based on the corresponding estimated response
values;

2. A subjective step, in which the points belonging to the Pareto-
optimal set are examined and then compared. Only points that
provide the best combination of responses are considered as a
compromise among all the estimated response values (quantitative
considerations). This choice is based on evaluation and incorporation
of the priorities/preferences of the company.

It must be noted that several optimal points corresponding to input
combinations could be considered and compared for selection, by considering
the priorities of different teams (decision-makers) involved in the study.
Therefore, the best optimal solution combines the quantitative results with the
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decision-makers’ priorities. Moreover, graphical methods are a useful tool for
discussion, comparison and achieving a consensus among all stakeholders
(Anderson-Cook and Lu, 2018).

3.2. THE ANALYTICAL METHODS FOR A ROBUST PROCESS
OPTIMIZATION

When dealing with several response variables, it is generally not feasible in
practical terms to simultaneously achieve the optimum for each of them with a
single input combination. To this end, many authors, starting from the methods
suggested by Derringer and Suich (1980) and Khuri and Conlon (1981), have
proposed methods to synthetize and optimize the responses, such as Ames et al.
(1997), Del Castillo et al. (1996), Rajagopal et al. (2005).

In addition, a further issue emerges when considering the multi-response
case and the dual response approach. Here, the simultaneous optimization of
several variables jointly with the consideration of two statistical models, e.g.,
location and dispersion models, increases the complexity and dimensionality of
the problem.

In order to solve the latter issue, which could imply a notable computational
burden, analytical optimization methods can be defined and simplified starting
from the dual approach theory and the building of a suitable performance
measure (Leon et al.,, 1987). To this end, we consider a multiplicative
relationship between the expected value (E(y) = ,u(x)) and the process
variance (Var(y) = 0%(z,x)) defined as the variance of the response variable.
Moreover, the expected value of the response could be identified in relative to
the target value (e.g., E(y) = 1), according to the Nominal the Best (NTB),
Smaller the Better (STB), or Larger the Better (LTB) situations. At the
beginning a general risk function is expressed as follows:

R(z,%) = (u(x) = 1)* + f(u(x))o*(2,%) &)

Formula (3) explicitly involves two terms: i) (u(x) — )% which expresses
the adjustment to the target value, while ii) f(,u(x))az(z, x) is related to the
multiplicative relation between location (adjustment) and process variance
(dispersion). Therefore, formula (3) allows for defining specific objective
functions in a dual response approach perspective, (Berni and Gonnelli, 2006),
and particularly, to optimize several response variables without separately
estimating the two statistical models for each response. This approach provides
a simplification as well as a weighting of the responses according to their
relative importance.
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More recently, split-plot designs and modelling have been optimized by
explicitly involving one model only for each response in a robust process
optimization context, in which random effects are also evaluated (Berni and
Bertocci, 2018; Berni and Nikiforova, 2022).

Let’s start by defining a general response surface model, y, (t = 1, ..., T),
for each of the T responses. The simultaneous optimization may be performed
considering the T estimated surfaces; each estimated model is evaluated as a
single function to be included in the objective function to be optimized. Starting
by formula (3) and considering the concept of a dual response approach, a
general objective function can be defined as the distance between the estimated
surface ¥, and the corresponding desired target value 7,:

Si(z,x) = (9(z,x) - Tt)z vt

The approach can be easily adapted for responses where the goal is to
achieve a maximum or minimum value. Subsequently, the minimization on the
coded experimental region y is performed by minimizing the sum of all the

distances, as follows:
min {Z S.(z, x)l “)
X
t

The objective function (formula (4)) is optimized conditional on the whole
experimental region y defined by the process variable ranges (and potentially
any limiting constraints for other technological issues), as well as involving the
estimated confidence interval for each random coefficient when random noise
factors are present.

In the following section, we compare the two optimization methods, the
Pareto front approach (Subsection 3.1), and the objective function of formula
(4), where the goal is to improve the accuracy of the measurement process of a
N/C machine, used in the orthodontic field; the measurements of which are
analyzed for a generic dental implant.

4. THE CASE STUDY: DATA DESCRIPTION AND PROCESS
OPTIMIZATION

In this Section, comparison of multi-response optimization methods is
made, after a short description of the experimental planning and data. For
further details see Berni (2010).
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4.1. SPLIT-PLOT DESIGN AND DATA DESCRIPTION

The aim of the study is to improve the accuracy in measurements for a N/C
machine, jointly with a reduction of the measuring time. The machine uses a
feeler pin with a movable bridge framework to facilitate the positioning of the
measured piece (dental implant). The machine needs specific environmental
conditions to function properly, all of which were ensured previously (see Berni
and Gonnelli, 2006).

In Berni (2010), five response variables, T =5, were optimized
simultaneously applying formula (4) and related to the different positionings of
the feeler pin on the dental implant during the process measurement steps. In
this paper we focus on the optimization comparison by looking at a subset of
three response variables.

By considering the dental implant used to set the measurement process, the
three responses are (with their respective targets in brackets): maximum circle
diameter-crmax (z4: 3.000), minimum circle diameter-crmin (t,: 2.790), and
eccentricity-eccen (tg: 0.000). There is no problem with correlation among the
three dependent variables, since each type of measurement is carried out as a
distinct step; moreover, each response variable is independent from the others
during the measurement of the piece. In order to reduce the measuring time, it is
possible to intervene on the process phase related to the identification of the
cone frustum, identified by three circles, at three different distances. In Figure 1,
the frustum of cone is shown by highlighting the three circles used to locate it.

Fig. 1: Location of the frustum of cone by three circles and definition of the “ circle-point”
factor
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In the initial setting, the N/C machine measures 7 points on each circle
(7,7,7), each point is denoted with a dot in Figure 1. A categorical input factor
"circle-point-cp" is then defined at four levels with each level corresponding to
a different number of points measured on each circle: (1) 7,7,7; (2) 7,5,7; (3)
5,7.5;(4) 5,5,5.

Two other variables are involved in the split-plot design: measurement
speed-mspeed (mm/sec), and drift speed-dspeed (mm/sec). Therefore, a split-
plot design with three factors is planned: two WP process factors, both at two
levels (measurement and drift speeds), and only one SP control factor, the ¢p
categorical factor at four levels. The final split-plot has 112 runs with seven
replicates.

Standardization of the responses was carried out (Berni, 2010) to
compensate for differences in magnitude among responses, even though both
responses and WP factors are expressed with the same unit of measurement.

4.2. THE PARETO FRONT APPROACH: OBJECTIVE PHASE

In order to identify the Pareto-optimal set, a series of 1764 combinations of
the factor mspeed, dspeed and cp levels were identified, from which, the
predicted response values cFmax, crrn and eccen were estimated using the
model form described in formula (2). The set of possible input combinations
(Figure 2) was formed by constructing a grid of points based on discrete levels
of mspeed and dspeed for each level of the factor ¢p. The fineness of the mesh
of each grid is 0.1, since this choice balances the complexity of calculation and
valid coverage of the two-dimensional region, (ranges of mspeed and dspeed
factors). The combinations of the possible solutions are labelled from 1 to 1764
according to the approach described in Chapman et al. (2014a): i) from the first
grid on the upper left to the lower right grid; ii) inside each grid starting from
the bottom row and moving from left to right, then starting at the end of each
row, from the leftmost point of the next row.

The obtained Pareto-optimal set consists of 61 combinations, highlighted by
the solid circles in Figure 2. These all combinations involve ¢p = 4, which
requires the smallest number of measured points. Therefore, irrespective of the
choice in the subjective phase, the Pareto front results ensure that an
improvement in the measurement time is always obtained.
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4.3. THE PARETO FRONT APPROACH: SUBJECTIVE PHASE

In order to compare the 61 combinations of the Pareto-optimal set, the
following procedure is carried out (Chapman et al., 2014a; Myers et al., 2016;
Anderson-Cook, 2017): i) the Pareto front values of each predicted response are
transformed into desirability values, so that the best value obtained (from the set
of solutions comprising the front) for each response is scaled to one, while the
worst value is scaled to zero; ii) for each combination of the Pareto-optimal set,
the respective desirability values are combined in a single global desirability
function. Since it was considered appropriate to heavily penalize undesirable
predicted response values, we choose the standard multiplicative desirability
form, based on the geometric mean expression, as follows:

D (Xp, W) = dcrmax (x?)wcrmax X dcrmin (x?)Wcrmin X deccen (x?)weccen

where xp is a combination of the Pareto-optimal set; dermax(Xp), dermin(Xp),
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deccen (Xp) the single desirability values related to the three predicted responses;
W = (Wermax Wermins Weccen)' @ Weight vector, With Wermax: Wermins Weccen =
0 representing the weights assigned to the three response variables and w4y +
Wermin + Weceen = 1. We note here that the small deviations of the response
values from their desired targets mean that even small misses from the target are
being strongly penalized, because one minimal error in measurements can lead to
a serious risk for a patient.

Figure 4 shows the mixture plot, which identifies the best combination (i.e.,
the optimum point for achieving the highest value of the global desirability
function) for each possible weighting of the response variables. Each point of the
mixture plot represents a weight vector (e.g., the left bottom vertex represents
w = (1,0,0)', the centroid marked with a black cross represents w =
(1/3,1/3,1/3), and the bottom edge represents the weight vectors with
Wermaxr Wermin > 0 and Weecen, = 0). For further details see Cornell (2002).

eccen

_& \ jr \g _.-/

crmax . 0.6 0.4 0.2 crmin

Fig. 4: Mixtureplot
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In the case study, 41 of the 61 combinations belonging to the Pareto-
optimal set appear in the mixture plot (each colored area identifies a different
combination), that is, they are best for at least one weight vector. Assuming that
the three response variables are thought to be of equal importance, the weights
reflecting company priorities/preferences are those around the centroid of the
triangle. The two best points for these weight combinations are 1723 and 1744.
In particular, 1744 is better for most of these weights, including the one directly
at the centroid of the triangle as well. Table 1 shows the detailed results
obtained for these two points, (1723 and 1744), differing only in the dspeed
level value, and providing similar predicted responses.

Tab. 1: Factor levels and predicted response values for the combinations 1723 and 1744

Factors Predicted responses
Combination
mspeed dspeed c¢p crmax  crmin eccen

1723 -1 0.9 4 3.00392  2.78911  0.00994

1744 -1 1 4 3.00390  2.78912  0.00998
89 881 " ~8r8
o o " o
8| & e ol| §
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Fig. 5: Trade-off plot of the 41 best point combinationsfor at least one weight combination
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Figure 5 contains the trade-off plot illustrating the desirability values
(internal vertical axes) and absolute value differences between the predicted
response values and the respective targets (external vertical axes) considering
the 41 solutions that are best for at least one weight combination. In Figure 5,
the trade-offs between the pairs of responses are similar to those highlighted by
the pairwise scatterplots in Figure 3. Moreover, as shown in the mixture plot
(Figure 4); the point combinations 1723 and 1744 provide an ideal balance
among the three responses when they are all prioritized as being equally
important.

In order to better analyze and compare these two combinations of interest,
Figure 6 shows the synthesized efficiency plots (Lu and Anderson-Cook, 2012)
which allow comparison of the relative efficiency of individual solutions with
the best available across all the possible weight vectors.” The synthesized
efficiency of a point combination (belonging to the Pareto-optimal set) xp , with

weight vector w, is defined as follows:

D(x:P' W)
maxy, [D(xp,w)]

The shading, from white to black, represents the transition from high to low
values of the synthesized efficiency. Each of the 19 shades of grey, starting from
the lightest, corresponds to a decrease in the synthesized efficiency of 0.05.

eccen eccen

08 402 08 I,’ ! 0.2

06 0.4 06 04
04 06 04 06
X X
02 08 0.2 08

cmax 08 06 04 02 crmin crmax 08 06 04 0.2 crmin

combinations 1723 combinations 1744

100% 75% ®50% ®25% ®0%
Fig. 6: Synthesized efficiency plot for the point combinations 1723 and 1744

3 It should be noted that for the construction of the synthesi zed efficiency plots (Figure 6) and
the mixture plot (Figure 4), a set of 20301 weight combinations has been defined, where
adjacentwei ghtsrel ated to asameresponsevariableare separated by adistanceequal to 0.005.
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The large white region characterizing the two graphs, represents
approximately 75% and 74% of the triangles, respectively, and indicates that
both points have a synthesized efficiency of at least 0.95 for a substantial
number of weight combinations. In particular, the white region around the
centroid of the triangle, indicated in Figure 6 with a black cross, shows that both
point combinations give excellent performance at the weighting region, which
reflects the company's priorities/preferences. The graphical plots provide
detailed information about the relative performance of the different contending
solutions and allow the experimenter to understand what alternatives are
available.

Moreover, we select the optimal solution as represented by combination
1744, since it is slightly better for a large number of weight combinations, and
in particular, for the weighting giving equal importance to the three response
variables. However, input combination 1723 provides a similar performance,
thus representing a valid competitive alternative.

4.4. RESULT COMPARISON BETWEEN THE TWO APPROACHES

Table 2 shows the results from both multi-response optimization methods:
the Pareto front approach and the analytical method applied in Berni (2010). By
comparing (Table 2) the optimum point combination 1744 (Piattoli, 2020) and
the optimal analytical solution, we can observe how only one process factor, cp,
shows the same optimal level; nevertheless, it must be noted that the circle-point
variable is the main process variable that we are interested in optimizing.
Although both combinations provide similar predicted response values, the
analytical method allows for obtaining a better value for the response e¢cen.
This is an important result in view of the relevance that this response variable
has in the actual process. The constructed Pareto front contains similar solutions
to those identified by the optimal analytical solution, but corresponding to
different weight combinations. Hence, with a more thorough exploration of the
solution set identified with the Pareto front, a similar solution could be selected
relaxing the assumption that all the responses were of equal importance.

Tab. 2: Optimization results: the comparison

Factors Predicted responses
Method
mspeed dspeed cp crmax  crmin eccen
Pareto front -1 1 4 3.00390 2.78912  0.00998

Analytical 0.710 0.362 4 3.00300  2.78500  0.00100
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It is important to note, however, that although a Pareto front can be
constructed for any number of responses of interest, the graphical tools
considered here only used three response variables, unlike the five considered in
Berni (2010). For this reason, it was only possible to make a partial comparison
between the results obtained through the two different methods. Nevertheless,
the Pareto front approach offers the possibility of using additional graphical
tools (Lu et al., 2017), which enable multi-response optimization of more than
three response variables.

Moreover, through the analytical approach, the optimization was carried out
considering both non-standardized and standardized data, where the latter gave
the best optimization results.

5. GENERAL COMPARISON AND FINAL REMARKS

The results obtained through the case study allows us to perform an
empirical comparison between the two approaches, where some specific
differentiations could be viewed in a theoretical perspective, as outlined in the
following scheme (Table 3). Both methods use the same experimental plan, data
and analysis, but then differ in how choose to optimize the settings of inputs.

Tab. 3: Theoretical step comparison between the Par eto front approach and the analytical

method
Sep Method
Pareto front Analytical
1 DoE: planning and trials DoE: planning and trials
2 Statistical modelling Statistical modelling
3 Optimization: Optimization:

A) objective phase - identification of a) definitionof objectivefunction (formula
Pareto-optimal set; 4);

B) subjective phase - choice of the b) minimization (or maximization) of the
optimal solution among the points objective function, and identification of
belonging to the Pareto-optimal set, the optima solution (optimal process
taking the quantitative results and variable levels),
the decision-makers' priorities into c) validation of the obtained results at step
account; (b) by: 1. the objective function value,

C) validation of the results obtained at (results also checked through:
step (B), intrinsic in the subjective convergency, gradient estimates,
phase. determinant of the Hessian matrix); 2.

application of the optimal solution
(obtained through step (b)) in the real
(actua) productionprocess, by involving
the stakeholders (engineers).
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Undoubtedly, the Pareto front approach offers the advantage of using
graphical tools in a simple and intuitive way, enabling straightforward
identification of leading solutions with discussion allowing for consensus of the
optimal solution among the various company teams involved. The elimination
of non-competitive choices streamlines where to focus further discussion.
Moreover, a subjective evaluation (Table 3, step B) can also be performed, with
the possible achievement of a unanimous decision among different stakeholders,
and considering different weightings of how important the performance on each
response is to overall results. It is possible to compare different identified
solutions, and see their relative strengths and weaknesses for each of the
responses of interest. Indeed, it allows for accurate comparison among several
input combinations of interest. A further advantage is the flexibility in response
weighting to handle multiple combinations of business priorities and to examine
the impact of these choices on the identified results. The transparent nature of
the Pareto front presents the experimenter with different alternatives that can bel
explored and compared. Nevertheless, this is also possible by performing.
analytical optimization methods (see Lin and Tu, 1995). In addition, response
weighting and analytical methods assign relative importance to each response
according to the estimated corresponding weight (Berni, 2010). This is
particularly helpful for solving technological issues and constraints, that can be:
measured and evaluated in a wide and general context. '

An advantage of the analytical method is the ability to include randomi
effects, within both the modelling and the optimization steps. Therefore, the
fixed as well as random effects are wholly involved, and as a result a robust
process optimization can be carried out, and the final validation (Table 3, step
c.2) specifically verified in the firm, allows for checking the validity in the
actual context. It is straightforward to use the same optimization function basedl'
on the inclusion of random effects for each of the responses as the basis for
constructing the Pareto front. '

The aforementioned advantages and disadvantages highlight the significant
relevance of both methods, as each has specific strengths and weaknesses that
would be relevant for a wide range of empirical situations (real industrial
processes, technological contexts) where they can be effectively applied.
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