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Abstract One of the commonalities of the theory of reliability, economics and insurance
is the study of non-negative data, generally skewed (longevity, profit and income), fitting
the appropriate model to this data and finding their characteristics. Risk measures play
a serious role in the economics of insurance and in the most financial institution. The
concepts of inequality measures are an important effect in the evaluation of the inequality
of income distributions and wealth in economic, social sciences, and other areas.
This paper states some properties of inequality indices and risk measures and applications
also, compare them with each other. The main aim of this paper is to investigate the re-
lationship between some inequality measures and risk measures with reliability concepts.
Specially, we are interested in finding the connection between Lorenz ordering and risk
measures. Examining the relationship between inequality indicators, risk and reliability
measures allows the researcher to use the criteria of each of these concepts to examine
the other concept.

Keywords: Risk measures, Inequality indices, Order statistics, Lorenz curve, Value-at-
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1. INTRODUCTION

Usually, when it comes to types of peril, the word risk is highlighted; but we need
to know that risk is not just a hazard and a negative concept. Risk in the general
sense indicates uncertainty about the future. We may put ourselves at risk and face
positive opportunities. These positive opportunities can be explained in financial
terms. Therefore, risk has two positive and negative dimensions. The concept of
risk in finance and investment is generally considered. Also, risk can be defined
as an act or event whose outcome is not known. In the definition, as it is clear, it
is not necessarily a bad situation for human beings, but it can also be a messenger
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of profit and benefit; so risk has two dimensions which are called bad risk or good
risk and chance. Here, the state of non-change in circumstances must also be
considered. To make the risk clearer, we can consider the game stock market,
which enters the stock market to make a profit and invests in certain stocks. The
stock market is facing a state of uncertainty here; Uncertainty about rising stock
prices and gains or declining stock values and losses, or an unchanged vision, so
it should be added that the result of open stock risk is either a profit or a loss or a
state of change.

The increasing complexity and uncertainty of the current economic system
suggests that many of the problems involve decisions under uncertainty and hence
with unknown consequences. Although risk control has been a central issue in fi-
nancial optimization since the original work at Markowitz in 1952, it is only in
recent decades that decision makers working in other areas of the program be-
come aware of the importance of risk analysis and control. In financial programs,
risk-taking or scarcity measures are increasingly being considered. Some of the
most important of these measures are Value-at-Risk and Value at Risk Condition
(CVaR).

Inequality refers to the measurement of imbalance or unequal distribution
in a system, which may be social, economic, political, diversity, etc. In eco-
nomics, it refers to how economic metrics are distributed among individuals in
a group, among groups in a set of population, or among countries. Economists
generally reckon about three broad areas of economic disparity. They are with
respect to wealth, known as wealth inequality, income or income inequality and
consumption or consumption inequality. Inequality of outcome from economic
transactions occurs when some individuals gain much more than others from an
economic transaction. Inequality of opportunity occurs when individuals are de-
nied access to institutions or employment, which limits their ability to benefit from
living in a market economy.

Inequality index of income distribution provides a useful tool for analysis
and based. It is possible to evaluate fiscal policies and compare the distribution of
income between different societies and times. Fairly recently, several inequality
curves have been made or investigated as the descriptors of income inequality.
The Lorenz curve was first introduced in 1905. The Bonferroni curve and the
Zenga-2007 curve are main the functions of the Lorenz curve. Arnold (Arnold,
2015) proved, they each specify the parent distribution up to scale factor, and they
each, give an inequality partial order that is corresponding to the Lorenz order.
The Lorenz curve is inspected as a very advantageous tool of economic suitable
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to its important role in the evaluation of the inequality of income distributions and
wealth.

Reliability is a broad concept. It is applied whenever we expect something to
behave in a certain way. It is one of the metrics that are used to measure quality.
The notion of reliability, in the statistical sense, is the probability that an equip-
ment or unit will perform the required function under the conditions specified for
its operations for a given period of time. The primary concern in reliability theory
is to understand the patterns in which failures occur, for different mechanisms and
under varying operating environments, as a function of its age. This is accom-
plished by identifying the probability distribution of the lifetime represented by
a non-negative random variable. Accordingly, several concepts have been devel-
oped that help in evaluating the effect of age, based on the distribution function of
the lifetime random variable and the residual life X . Concepts of aging describe
how a component or a system improves or deteriorates with age; and they are
very serious in the reliability analysis. In reliability, several aging classes of life
distributions have been presented to explain the various forms of aging. Differ-
ent order relations have been developed using measures in connection with many
fields such as reliability, economics, queuing theory, survival analysis, insurance,
operations research, etc. distribution function frame work.

The relationship between inequality and reliability indicators in different ways
has already been investigated in several articles. For example, Zenga curve shall
be interpreted as the difference in average age of components which has survived
beyond age X from those which has failed before attaining age X , expressed in
terms of average age of components exceeding age X .

Several authors have discussed associations between income and wealth in-
equality measures and some main concepts applied in survival analysis and re-
liability theory. Chandra and Singpurwalla (Chandra and Singpurwalla, 1981)
explained the relationship between Lorenz curve and Gini index in economics
and total time on test and mean residual life in reliability. Klefsjo (Klefsjö, 1984)
produced more effects along the exact same lines and shown reliability under-
standings of more methods from economics. Giorgi and Crescenzi (Giorgi and
Crescienzi, 2001) demonstrated some associations between the total time on test
and Bonferroni curve and showed how the Bonferroni curve might be used in
reliability theory. Singpurwalla (Singpurwalla, 2007) observed the connection in-
volving the survival function in reliability and the advantage pricing method of
fixed income tool like a risk-free zero discount bond. (Behdani et al., 2018, 2019)
considered the relationships between the weighted distributions, generalized fail-
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ure rate and generalized reversed failure rate with some inequality measures. They
also studied some properties of double truncated distributions and in view of in-
come inequality (Behdani et al., 2020).

Today, one of the important goals of researchers is to establish a connection
between different sciences or various branches of each science. Some indicators
of inequality can be generalized to non-income distribution phenomena. In the
present work, we have examined the connection between the existing inequali-
ties measures risk measures and reliability concepts, the relationship of the con-
cepts of inequality indices with certain reliability concepts are exploited to obtain
characterization results for probability distributions. Further some results on a
stochastic order using inequality curves are also established. There are many rea-
sons to study the relationship between the risk measures, the reliability concepts
and the inequality measures. For example, the study of the relationship between
inequality indices, risk measures and measurement standards of reliability makes
it possible to use each of these three concepts for studying the other one. We
are able to set some other criteria for exponentiation based on the Lorenz curve
and Gini index to use insurance and reliability. Also, we can obtain some new
properties for the Lorenz curve, the Gini index, risk measures and the reliability
indices. Moreover, we are able to indicate that the Lorenz curve can be expended
to create a variant explanation of lifetime and insurance data and vice versa and,
as well, determine the bound of the class of lifetime distributions in terms of its
Lorenz curve, risk measures and the other index inequalities or risk measure. The
purpose of this article is to find the relationship between indicators of economic
inequality and some concepts and indicators of reliability and insurance. In fact,
in this text, we seek to find some connection between insurance economics and
reliability, so that by having the indicators of each, we can comment on other fea-
tures and characteristics. Finding a connection between the concepts of reliability
and indicators of economic inequality can be very useful. Because finding the
connection between these concepts enables researchers to use the results obtained
for each of these concepts and indicators separately. For example, the Gini coef-
ficient can be used for exponential tests, or a new indicator of inequality can be
defined using the concepts of reliability, or interpretations of economic inequality
can be obtained for lifetime data. For example, the Zenga curve can be used as
the difference between the average lifespan of components that were destroyed
before reaching the desired age and the average age of those who have reached
the desired age compared to those who have reached the desired age. Interpreted.
In addition, categories of lifetime distributions can be obtained using inequality
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indices and Insurance. (Righi, 2019) presented a composition of risk and devi-
ation measures, which contemplate these two concepts. Based on the proposed
Limitedness axiom, they proved that this resulting composition, based on prop-
erties of the two components, is a coherent risk measure. Similar results for the
cases of convex and co-monotone risk measures are exposed. Using the Gini
coefficient,(Eugene et al., 2021) introduced and explored Gini Shortfall (GS), a
more comprehensive risk measure than VaR and ES. GS provides information on
the variability of data in distribution tails measured with Tail Gini functional, a
tail variability measure based on the variability measure Gini Mean Difference
or Gini functional. Using an improper probability measure can affect risk fore-
casting and lead to wrong financial decisions. (Berkhouch et al., 2022) proposed
a Deviation-based approach for quantifying model risk associated with choosing
an in appropriate probability measure for risk forecasting. This measuring ap-
proach provides us with information about how far our risk measurement process
could be affected by model risk. They introduced the Gini coefficient as one of
the criteria for measuring deviation. (Berkhouch et al., 2018) introduced a risk
measure that extends the Gini-type measures of risk and variability, the Extended
Gini Shortfall, by taking risk aversion into consideration. (Furman et al., 2017)
introduced and explored Gini-type measures of risk and variability, and developed
the corresponding economic capital allocation rules. The content of this paper are
as follows. The Lorenz curve and several inequality measures are studied in Sec-
tions 2. Risk measures and theire properties are discussed in Section 3. In Section
4, we give a brief review of the reliability consepts and the stochastic order. Fi-
nally, in Section 5 we study relations between the inequality measures and the risk
measures.

2. INEQUALITY INDICES

Economists are interested in measuring how incomes and wealth are dis-
tributed in societies. This interest is due to the effect of how income is distributed
on different economic categories. Researchers in the field of income distribution
agree that higher average incomes increase social welfare, while higher inequality
reduces social welfare. The question is, how do we measure inequality ?

In one of the oldest topics, political economy is of fundamental importance.
It means how income from production is divided among the factors of production
or how much each economic sector contributes. Unequal distribution of factors of
production will naturally lead to an inadequate distribution of income. Therefore,
in order to justify the distribution of income, the factors of production must be
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distributed fairly and equally among different individuals and enterprises before
production. Many indices have been introduced to measure income inequality.
Among them, the Lorenz curve, Gini coefficient, Bonferroni curve and Zenga
curve can be named.

The Lorenz curve was first defined by Lorenz (1905) ((Lorenz, 1905)) and
presents a graphical tool to investigate income inequality for about one hundred
years since they were designed. 2

Definition 2.1. The Lorenz curve of X , a non-negative random variable with pos-
itive and finite mean, is given by

L(p) =
1

E(X)

∫ F−1(p)

0
u f (u)du, 0 ≤ p ≤ 1. (2.1)

It is worthwhile to be mentioned that LX has the following properties:

• Lorenz curve is a distribution function, twice differentiable, convex, in-
creasing.

• L(0) = 0 and L(1) = 1 on [0;1].

• limp→1L′(p)(1− p) = 0, LX(p)≤ p.

Let the new random variable Xa,b defined as the distribution of X truncated to the
closed interval [a,b]. Behdani et al. (Behdani et al., 2020) introduced the Lorenz
curve for a double truncated random variable (Xa,b) as follows:

LXa,b(p) =
LX(p[F(b)−F(a)]+F(a))−LX(F(a))

LX(F(b))−LX(F(a))
(2.2)

Left and right truncated are a special case of doubly truncated when b → ∞ and
a → 0. Suppose p = F(x) is the ratio of people whose income is less or equal x.

2 Let X be a non-negative continuous random variable with positive and finite mean. We pro-
pound FX (u) = P{X ≤ u} for the distribution function and apply the symbolisms f to score respec-
tive probability (density) distributions. When no confusion may occur, we write simply F instead of
FX . Let F−1

X (u) be its right continuous inverse, i.e. F−1
X (u) = inf{v : FX (v)≥ u, u ∈ (0,1)}, where

the lower and upper bounds of the support of FX (SF ) are F−1
X (0) and F−1

X (1) respectively. As F−1
X

is non-decreasing, it is continuous everywhere, except on an at most countable set of points.
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In this case, the mathematical expectation (average) income of these people can
be shown as:

E[X |X ≤ x] =
µL(p)

p
(2.3)

And therefore

E[X |X > x] =
µ(1−L(p))

1− p
(2.4)

The Gini coefficient has been found helpful to analysis the inequality of incomes.
The value of the Gini coefficient shows the extent of income inequality. The Gini
coefficient is the most famous criterion for income inequality. This is correspond-
ing to twice the region between the equality line and the Lorenz curve, which is
exactly a relative measure of income inequality:

G = 2
∫ 1

0
(y−L(y))dy = 1−2

∫ 1

0
L(y)dy. (2.5)

A relatively minor adjustment of the Lorenz curve is the Bonferroni curve BX(p).
It was written as:

BX(p) =
E(X |X ≤ F−1(p))

µ
=

L(p)
p

,0 < p ≤ 1. (2.6)

Consequently, we cannot say in general that Bonferroni curve starts from the ori-
gin of the orthogonal plane, as it depends on the definition of X ((Giorgi and
Crescienzi, 2001)). The Bonferroni curve is could be concave in some parts and
convex in the others and strictly increasing. The Bonferroni curve has uses in
fields such as medicine, insurance, demography, and reliability. We can rewrite

BX(p) as 1− E{X |X ≤ F−1(p)}
µ

.

The Zenga index is the another measure of income inequality. The ratio of
the mean income of the poorest 100p in the distribution to that of the rest of the
distribution, namely the 100(1− p) richest is the Zenga curve Z(p). The Zenga
inequality measure is defined as:

Z(p) = 1− E(X |X ≤ F−1(p))
E(X |X > F−1(p))

(2.7)

The Zenga curve can be written as:

ZX(p) = 1− L(p)
p

· 1− p
1−L(p)

p ∈ (0,1). (2.8)
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X is smaller than Y in the Lorenz order (X ≤L Y ), Bonferroni order (X ≤B Y ) or
Zenga order (X ≤Z Y ) iff LY (p) ≤ LX(p), BY (p) ≤ BX(p) or ZX(p) ≤ ZY (p) re-
spectively. These orders are invariant with respect to scale transformation. The
Lorenz order is the natural mathematical abstraction of Lorenz’s (1905) compar-
ison of income distributions via nested Lorenz curves ((Arnold, 2012)). From
definitions of the Zenga and Bonferroni curves and definitions of the Zenga, Bon-
ferroni and Lorenz orders immediately conclude that

X ≤L Y ⇐⇒ X ≤B Y ⇐⇒ X ≤Z Y. (2.9)

The excess wealth measures EWX is closely related to the Lorenz curve and it
defined as

EWX(p) =
∫ ∞

F−1(p)
F(x)dx,

=
∫ 1

p
(F−1(q)−F−1(p))dq, (2.10)

= µ(1−L(p))−F−1(p)(1− p)

The excess wealth function is equal to the stop-loss function evaluated at F−1(p)
and, therefore it is the net premium for a stop-loss contract with fixed retention
x = F−1(p) ((Belzunce et al., 2015)).

3. RISK MEASURES

The probability that the actual return on investment will deviate from its pro-
jected return is called risk. Risk also includes the possibility of losing all or part
of the investment principal. There are different criteria for measuring investment
risk. Risk measurement criteria were first determined by studying statistical dis-
persion indices and then newer measures were developed. Risk is one of the first
concerns of investors and as an important criterion in decision making It is consid-
ered an investment, and to accept an investment without considering this criterion
is to be in a harmful situation. In fact, successful investors are those who accept
an acceptable level of risk, because uncertainty does not always mean a detri-
mental future. If the conditions of uncertainty are such that they shape a positive
future, then it would be reasonable to take risks. In the stock market, for example,
uncertainty does not always mean lower stock prices.

3.1. DIFFERENCE BETWEEN RISK AND UNCERTAINTY

Risk and uncertainty are two important terms in the world of finance and
business. Although some tend to use these two terms interchangeably, there is a
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distinct difference between risk and uncertainty. Risk is the chance that an invest-
ments actual outcome will differ from the expected outcome, while uncertainty is
the lack of certainty about an event.The main difference between risk and uncer-
tainty is that risk is measurable while uncertainty is not measurable or predictable.
Other differences between the two include the following:

• Risk is the chance that an investments actual outcome will differ from the
expected outcome, while uncertainty is the lack of certainty about an event.

• In risk, potential outcomes are known, but in uncertainty, potential out-
comes are unknown.

• Risks can be measured and quantified using theoretical models, but uncer-
tainty cannot be measured.

• Moreover, risks can be controlled if proper measures are taken at the right
time; however, uncertainty is beyond control.

Therefore, the concept of risk plays a key role in financial markets and there-
fore the identification of risk types, measurement and management is of great
importance. To read more about the difference between risk and uncertainty, see
(Gifford, 2003). Denuit ((Denuit et al., 2006)) introduces the risk in following
definition.

Definition 3.1. A risk R is a non-negative random variable representing the ran-
dom amount of money paid by an insurance company to indemnify a policyholder,
a beneficiary and/or a third-party in the execution of an insurance contract.

The following We state the definition of a risk measure presented by Denuit
((Denuit et al., 2006)).

Definition 3.2. A risk measure is a functional ℘ mapping a risk R to a non-
negative real number ℘(R), possibly infinite, representing the extra cash that has
to be added to R to make it acceptable.

The idea is that ℘ quantifies the riskiness of R: large values of ℘(R) tell us
that R is dangerous. Specifically, if R is a possible loss of some financial portfolio
over a time horizon, we interpret ℘(R) as the amount of capital that should be
added as a buffer to this portfolio so that it becomes acceptable to an internal or
external risk controller. In such a case, ℘(R) is the risk capital of the portfolio.
Such risk measures are used for determining provisions and capital requirements
in order to avoid insolvency; see Panjer (Panjer et al., 1998).
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3.2. DESIRABLE PROPERTIES

The following conditions are of interest for a risk measure:

1. ℘(X)≤ max(X) = F−1
X (1) (Non-excessive loading)

2. ℘(X)≤ E(X) (Non-negative loading)

3. ℘(X + c) =℘(X)+ c for each constant c(Translativity)

4. ℘(c) = c(Constancy)

5. ℘(X +Y )≤℘(X)+℘(Y ) for all random variables X and Y (Subadditivity)

6. ℘(X +Y ) =℘(X)+℘(Y ) for all comonotonic random variables X and Y
(Comonotonic additivity)

7. ℘(cX) = c℘(X)(Positive homogeneity)

8. Pr(X ≤ Y ) = 1 ⇒℘(X)≤℘(Y ) (Monotonicity)

9. Let {Xn,n = 1,2, ...} be a sequence of risks such that Xn → X as n → ∞, that
is,

lim
n→∞

FXn(x) = FX(x) (3.1)

for every continuity point x of FX . Then,

lim
n→∞

℘Xn(x) =℘X(x) (3.2)

(Continuity with respect to convergence in distribution)

Several authors have chosen some of these conditions to form a set of require-
ments that any risk measure must meet. A risk measure is called a coherent risk
measure if it satisfies axioms (3) translative, (5) subadditive, (7) positive homo-
geneous and (8)monotone is called coherent. We can use the Lorenz curve as a
measure of risk. The Lorenz curve shows the cumulative share of loss or gain
from different sections of the portfolio. ∀c > 0, α ∈ [0,1]

LcX(α) =
1

cµ

∫ α

0
F−1

cX (t)dt

=
1

cµ

∫ α

0
cF−1

X (t)dt (3.3)

= LX(α)
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The Lorenz curve is positive homogeneity or in other words, it is invariant with
positive scaling. This characteristic indicates that inequality in society does not
depend on the scale of measurement. ∀c > 0, α ∈ [0,1]

LX+c(α) =
1

µ + c

∫ α

0
F−1

X+c(t)dt

=
1

µ + c

∫ α

0
(F−1

X + c)(t)dt (3.4)

=
µ

µ + c
LX(α)+

c
µ + c

α

therefore

µLX+c(α)+ cLX+c(α) = µLX(α)+ cα (3.5)

µ(LX+c(α)−LX(α)) = c(α −LX(α))

Since we have L(p)≤ p for each p ∈ [0,1] so LX+c(α)≥ LX(α)). This means that
inequality is reduced by adding a fixed amount to the income of people in society

Since X ≤ max(X) we have that F−1(p) ≤ max(X) so that L(p) ≤ pmax(X)

µ
. It

can easily be shown that the Lorenz curve does not have any of the properties of
4 and 6 either. For any p > 0, F−1(p) = c we have L(p) =

cp
µ

. And similar to

the previous cases, it can be shown that it has the features of 5, 8 and .

• L(p+q)≤ L(p)+L(q) for all p and q in [0,1](Subadditivity)

• Pr(X ≤ Y ) = 1 ⇒ LX(p)≤ LY (p) (Monotonicity)

• Let {Xn,n = 1,2, ...} be a sequence of risks such that Xn → X as n → ∞, that
is,

lim
n→∞

FXn(x) = FX(x) (3.6)

for every continuity point x of FX . Then,

lim
n→∞

LXn(p) = LX(p) (3.7)

(Continuity with respect to convergence in distribution)

Therefore, the Lorenz curve is not a coherent risk.
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3.3. VALUE-AT-RISK

Value at risk (VaR) is a statistical technique used to measure and determine
the amount of financial risk in a company or investment portfolio over a period
of time. In general, it can be said that the value at risk measures the maximum
amount of expected loss in a certain time horizon at a certain level of confidence
and is measured by 3 variables: the amount of potential loss, the probability of
potential loss and the time period. VaR is defined as follows.

Definition 3.3. For a fixed probability level α , the value-at-risk denoted by VaRX

is defined as
VaRX(α) = F−1

X (α). (3.8)

Equation (3.8) for all x ∈ R and p ∈ (0,1) is equivalent to the following equa-
tion.

VaRX(p)≤ x ⇔ p ≤ FX(x). (3.9)

You can see properties of this measure in the (Denuit et al., 2006). VaR can have
several equivalent interpretations((Kisiala, 2015)) :

• VaRX(α) is the minimum loss that will not be exceeded with probability α .

• VaRX(α) is the α-quantile of the distribution of X.

• VaRX(α) is the smallest loss in the (1−α)×100% worst cases.

• VaRX(α) is the highest loss in the α ×100% best cases.

It can be shown that the value at risk has the following properties:

1. VaRX(α)≤ max(X).

2. ∀α > 0,VaRc(α) = c

The value at risk is non-excessive loading, translative, comonotonic additive,
monotone, positively homogeneous and is continuous with respect to convergence
in distribution. VaR is an optimal capital requirement for insurance companies.
The value at risk does not necessarily include entail non-negative loading, sub-
additive. There are several reasons explaining the success of CVaR as a risk
measure. From a practical point of view, CVaR penalizes only the negative de-
viations with respect to an efficiency target (downside risk measure); it is sensi-
tive to extremely negative outcomes but it is not as conservative as a Minimax
approach. From a theoretical viewpoint, CVaR is a coherent risk measure, i.e.,
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it guarantees the consistency with intuitions about rational risk-averse decision
makers. From a computational point of view, CVaR optimization can often be
embedded in an optimization problem by adding linear constraints and contin-
uous variables, i.e., without increasing the expected complexity of the resulting
optimization model. Therefore, it is not surprising that in recent years several
authors incorporate CVaR as an additional criterion in their optimization prob-
lems, even while facing a number of applications different from optimization in
finance ((Filippi et al., 2017)). CVaR is strongly related to another risk measure
called Value-at-Risk, or VaR for short, which is heavily used in various financial
and engineering problems, including military, nuclear, and airspace applications
((Sarykalin et al., 2008)). Intuitively speaking, the VaR of a portfolio of assets,
given a specified probability level α , can be defined as the smallest threshold value
η such that the probability that the loss on the portfolio exceeds η is α . The value
α is chosen by the decision maker, and is often called confidence level. As pointed
out by Rockafellar and Uryasev (Rockafellar and Uryasev, 2002), a very serious
shortcoming of VaR is that it does not provide any indication about the severity of
losses beyond its value. Indeed, Sarykalin et al. (Sarykalin et al., 2008) highlight
that one can significantly increase the largest loss exceeding the VaR, but the VaR
risk measure will not change. The CVaR overcomes this limit affecting the VaR,
as it measures the conditional expectation of losses above η (see (Rockafellar
et al., 2000)) (Filippi et al., 2017) survey reviews 88 papers, all dating from 2005
or later, where the concept of CVaR is embedded into a decision problem arising
in a non-financial context. The related literature is growing ceaselessly. The clas-
sification of the papers reviewed in this survey is depicted in Figure 2 Filippi et al.
(Filippi et al., 2017) presented those articles that deal with a classical topic in the
Operations Research and Management Science (OR/MS) literature. These topics
are Inventory management, Supply chain management, Transportation and traffic
control, Location and supply chain network design, Networks, and Scheduling.
Altogether they represent roughly 70% of the articles surveyed. A different topic
is Energy, which covers issues specifically related to the supply chain in the en-
ergy sector. Medicine concerns a specific application of radiation therapy, where
CVaR is applied in a deterministic context. Finally, the label Other is referred to
a number of different applications, that do not fit in any the above categories.
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Figure 1: The classification per area of the literature reviewed ((Filippi et al., 2017)).

3.4. TAIL VALUE-AT-RISK

A VaR at the preset level α does not distribute any information about the
thickness of the high-performance sequence. This is a significant drawback be-
cause in practice the regulator is related not only to the default frequency but also
to the default intensity. Shareholders and management should also be concerned
about the question, "How bad is it?" When they want to assess the risks in a con-
sistent way. Therefore, another frequently used risk criterion is called the tail
value at risk (TVaR) and is defined below.

Definition 3.4. The tail value at risk TVaR, denoted by TVaRX(p) for a risk X
and a probability level p, is defined as

TVaRX(p) =
1

1− p

∫ 1

p
VaRX(t)dt, 0 < p < 1. (3.10)

Hence, TVaRX(p) also can be interpreted as the arithmetic average of the VaRs of
X , from p on.

Note that when p = 0, then TVaRX(p) is equal to the mean of X . TVaR is no-
ripoff, TVaR does not induce unjustified loading, induces a non-negative loading,
is translative, positively homogeneous, comonotonic additive and monotone, is
subadditive.
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Alternative names for TVaR in the sources include: Average Value-at-Risk,
Expected Shortfall, Conditional Value-at-Risk or Tail Conditional Expectation,
although some authors make subtle differences between their definitions((Kisiala,
2015)). The conditional value-at-risk CVaRX is defined as the conditional expec-
tation of X , given that X ≥VaRX , i.e.

CVaRX = E(X |X >VaRX(α)). (3.11)

Figure 2 shows the value at risk and conditional value-at-risk for a contin-
uous random variable X . The VaRX(α) can be calculated using the cumulative
distribution function of X and CVaRX(α) can be calculated from VaRX(α).

Figure 2: VaRX and CVaRX of the normal random variable expressing damage.

Example 3.5. For U from estandard uniform(Denuit et al., 2006),

E(X) = E(F−1
X (U)) =

∫ 1

0
F−1

X (t)dt = TVaRX(0), (3.12)

3.5. WANG RISK MEASURES

The Wang risk measure is a class of risk measures. This class encompasses
several indicators such as the Value-at-Risk and the Conditional Value-at-Risk.
Can be shown the aforesaid quantities can be written as simple combinations of
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Figure 3: The certain example of the distortion function for wang risk measure, VaR (left)
and CVaR(right).

Wang distortion risk measures. Wang risk measure is weighted average of the
quantile function. The Wang risk measure can be useful to price insurance pre-
miums, bonds, and tackle capital allocation problems((Wang, 2004)). The Wang
risk measure is defined next.

Definition 3.6. Let X is a non-negative random variable. The Wang risk measure
ρg of risk X is defined as

ρg(X) =
∫ ∞

0
g(1−FX(x))dx. (3.13)

for some right-continuous and non-decreasing, with g(0) = 0 and g(1) = 1. A
function with these properties is called a distortion function.

ρg(X) can be written as

ρg(X) =
∫ 1

0
g(t)dF−1(1− t) =

∫ 1

0
F−1(1− t)dg(t). (3.14)

A Wang risk maesure is a weighted version of the expectation of the random
variable X . Easily seen certain examples contain

• If I{·} be the indicator function and g(x) = I{x ≥ 1−α} then ρg(X) is
equal to VaRX(α).

• If g(x) = min(
x

1−α
,1), then ρg(X) is equal to TVaRX(α).
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We know that the Lorenz curve is convex and L(0) = 0, L(1) = 1, so if g(x) =
1−L(1− x) then g(x) is a distortion function and the wang risk measure is equal
to:

ρg(X) =
∫ ∞

0
(1−L(FX(x)))dx =

∫ 1

0
L(1− t)dF−1(1− t). (3.15)

Results in ρg(X) =
G−1

2
+F−1(1)−F−1(0) Which G is the Gini coefficient.

The stationary renewal distribution is an important concept in ruin theory. Let us
recall the definition of the stationary renewal distribution.

Definition 3.7. For a non-negative random variable X with finite mean, let X[1]
denote an random variable with distribution function

FX[1](x) =
1

E(X)

∫ x

0
FX(t)dt = 1− EW (x)

E(X)
, x ≥ 0. (3.16)

The distribution function FX[1] is known as the stationary renewal distribution as-
sociated with X .

Example 3.8. Let X ∼ N(µ,σ2). Then, we have α ∈ (0,1)

VaRX(α) = µ +σΦ−1(α), (3.17)

EWX(x) = σΦ′
(

x−µ
σ

)
− (x−µ)

(
1−Φ

(
x−µ

σ

))
(3.18)

TVar(α) = µ +σ
Φ′(Φ−1(α))

1−α
(3.19)

ES = σΦ′(Φ−1(α))−σΦ−1(α)(1−α) (3.20)

where Φ denotes the standard normal distribution function.

Example 3.9. Let X ∼ LN(µ,σ2). Then, we have α ∈ (0,1)

VaRX(α) = exp(µ +σΦ−1(α)),α ∈ (0,1) (3.21)

EWX(x) = exp(µ +
σ2

2
)Φ(x1)− xΦ(x2), x > 0 (3.22)

TVar(α) = exp(µ +
σ 2

2
)
Φ(σ −Φ−1(α))

1−α
(3.23)

ES = exp(µ +
σ 2

2
)Φ(σ −Φ−1(α))− exp

(
µ +σΦ−1(α)

)
(1−α) (3.24)

where Φ denotes the standard normal distribution function, x1 =
µ − lnx

σ
+σ and

x2 = x1 −σ .
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Figure 4: Income inequality indices of the Lognormal distribution.

4. RELIABILITY CONCEPTS

Lifetime variables and data are one of the most important variables and data
in the world today, which are studied in detail in a branch of statistics called
reliability. Lifetime variables and data are one of the most important variables
and data in the world today, which are studied in detail in a branch of statistics
called reliability.

Reliability is one of the most important quality characteristics of large and
complex components, products and systems, which has a significant role and im-
portance in evaluating the objectives and examining their current status. Nowa-
days, the necessity of discussing reliability and similar topics in all practical as-
pects has been accepted as an indisputable principle and need. The issue of relia-
bility arose in the nineteenth century to help the marine and life insurance industry
to more accurately calculate the amount they received from the customer. Reli-
ability plays an essential and undeniable role in industry, technology, medicine
and other sciences. There are different definitions of reliability in statistical texts.
In fact, it can be defined as the probability of a system performing satisfactorily
at a given time and under certain operating conditions. Statistically, reliability is
the compatibility of a set of dimensions or measuring instruments often used to
describe an experiment. In following we give a brief note of the basic concepts
and results in reliability theory, which are used in the sequel and are referred in
the text. The commonly used concepts in reliability theory are:
(i) the survival function, (ii) the failure rate, (iii) the mean residual life function.
The survival function or tail function of F is signified by F = 1−F The hazard
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Figure 5: The Risk measures for Normal (left) and (right) for Lognormal.

Figure 6: The VaR for Normal (left) and Lognormal (right) for different variances(ranging
from one to six from right to left).
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rate or failure rate function rX(t) is defined as rX(t) =
fX(t)

FX(t)
for t ≥ 0. The haz-

ard rate corresponds to the intensity of mortality in life insurance. Let X be a
non-negative random lifetime with cd f F(.) with a finite moment. The residual
holding in excess of l given X > l represents X − l|X > l. The mean residual life
(MRL) is defined as:

mF(x) = E(X − t|X > t) =
∫ ∞

x F(t)dt
F(x)

, x ≥ 0 (4.1)

If F(.) is absolutely continuous, then MRL can be rewritten as

mF(x) =
∫ ∞

x t f (t)dt
F(x)

− x = ν(x)− x, x > 0. (4.2)

In economics, mF(x) describes the extent of wealth the proportion of rich beyond

t in the population command. The function ν(t) = E(X |X > t) =
∫ ∞

t x f (x)dx
F(t)

is

known as the vitality function (V F) or life expectancy. The V F and MRL play im-
portant roles in engineering reliability, biomedical science, and survival analyzes.
Comparing V F with Equation (3.11), it is clear that these two are a formula that
have different applications in reliability and insurance.

5. STOCHASTIC ORDER

Stochastic orderings are tools used in reliability, insurance, finance, and other
fields to compare characteristics of interest, such as location, variability or shape,
of probability distributions. Stochastic orders have shown to be useful notions
in several areas of economics, the inequality analysis, risk analysis, reliability or
portfolio insurance. Since the 1970, stochastic dominance rules have been used in
comparison and analysis of poverty and income inequality.

Definition 5.1. Let X and Y be two random variables with distribution functions
F and G, respectively. Then,X is said to be smaller than Y :

(a) In the usual stochstic order (denoted by X ≤st Y ) if F−1(p)≤ G−1(p), far
all p ∈ (0,1).

(b) In the dispersive order (denoted by X ≤disp Y ) if F−1(p)− F−1(q) ≤
G−1(p)−G−1(q), for all 0 < q < p < 1.
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(c) Stoehastie dominance of order 1(denoted by X ≤SD(1) Y ) iff E[ϕ(X)] ≤
E[ϕ(Y )] for all integrable monotonic function ϕ .

(d) Stoehastie dominance of order 2(denoted by X ≤SD(2) Y ) iff E[ϕ(X)] ≤
E[ϕ(Y )] for all integrable concave, monotonic function ϕ .

(e) Monotonic dominance of order 1(denoted by X ≤MD(1) Y ) iff E[ϕ(X)] ≤
E[ϕ(Y )] for all integrable concave function ϕ .

Definition 5.2. The random variable X is smaller than Y (over the union of the
supports of X and Y ) in the:

• Convex order (X ≤c Y ), if F−1
Y (FX(x)) is convex on the support of X .

• Star shaped order (X ≤∗ Y ), if
F−1

Y (t)
F−1

X (t)
is an increasing function in t ∈ (0,1).

• Lorenz order (X ≤L Y ) if LY (u)≤ LX(u) for all 0 ≤ u ≤ 1.

It should be mentioned that

X ≤c Y =⇒ X ≤∗ Y =⇒ X ≤L Y =⇒ Y ≤G X . (5.1)

6. MAIN RESULTS

6.1. RELATIONSHIPS BETWEEN RISK MEASURES AND LORENZ CURVE

Following, we state the properties of Lorenz curve and CVaRX . Part of this re-
lations is expressed in reference (Pflug, 2000) and other parts can easily be proved.

Remark 6.1. Let FX is continuous. For any p ∈ (0,1), the following identities are
valid:

• TVaRX(p) =VaRX(p)+
1

1− p
EWX(p).

• CVaRX(p) =
EWX(p)

FX(VaRX(p))
.

• CVaRX ,VaRX (Lorenz curve) is (is not) translation-equivariant.

• CVaRX ,VaRX (Lorenz curve) is (is not) positively homogeneous.

• CVaRX (Lorenz curve) is (is) convex.
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• If Y has a density, E(Y )= (1−α)CVaRX(Y )−αCVaR1−α(−Y ),VaRX(Y )=
−VaR(1−α)(−Y ) (E(Y ) = F−1(p), i f f L′(p) = 1).

• CVaRX is monotonie w.r.t. SD(2) and MD(2).

• VaRX is comonotone additive and is monotonic w.r.t. SD(1).

In principle, VaR and CVaR measure different properties of the distribution.
VaR is a quantile and CVaR is a conditional tail expectation. The two values
coincide only? if the tail is cut off. Let [Y ]c be the right censored cost vari-
able ([Y ]c = min(Y,c)). If we set c = VaRX then CVaRX([Y ]c) = VaRX(Y )(Pflug
(2000)).

Proposition 6.2. The following statement is taken from (Pflug, 2000):

• CVaRX(Y )≥VaRX(Y ).

• VaRX(Y ) = sup{v : CVaRX([Y ]v) = v}.

• If Y is nonnegative, then
[

E(Y n)− (1−α)CVaRX(Y n)

α

] 1
n

→ VaRX(Y ) as
n → ∞.

In here, some of the important results about the relationship between risk
measures and some measures of income inequality are presented.

Proposition 6.3. It is easy to see that, when the distribution function is continu-
ous,

VaRX(α) = µL′(α) (6.1)

L′′(α) f (VaRX(α)) =
1
µ
, (6.2)

also, we have the following equalities for all α ∈ (0,1):

CVaRX(α) =
µ(1−L(α))

1−α
(6.3)

CVaRX(α) =
µ(1−αB(α))

1−α
(6.4)

CVaRX(α) =
µ

1−αZ(α)
(6.5)

(6.6)
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And

mF(VaRX(α)) = µ
L(α)

1−α
− x, (6.7)

mF(VaRX(α)) =CVaRX(α)− x. (6.8)

where L(u) = 1−L(u).

Table 1: Some distributions and their properties.

Name F(x) L(x) CVaRx

Exponential 1− e−λx ;x ≥ 0 x+(1− x) log(1− x)
1− log(1− x)

λ
Uniform

x−a
θ

;a ≤ x ≤ a+θ
2ax−θx2

2a+θ
θ
2

2a+θ(1+ x)
2a+θ

Weibull 1− exp{−(λx)}α ; α,λ > 0 1− Γ(− log(1− x),1+1/α)

Γ(1+1/α)

λΓ(− log(1− x),1+1/α)

1− x

Lognormal Φ
{

logx−α
σ

}
; σ > 0, x ≥ 0 Φ(Φ−1(x)−σ)

exp(µ +σ2/2)(1−Φ(Φ−1(x)−σ))

1− x

Pareto 1− ( x
β )−α ; x ≥ β > 0 1− (1− x)

α−1
α α > 1

α3β 2

(α −1)(α −2)
(1− x)

1
α

Exponential 1− e{−(λx)} ; λ > 0 x+(1− x) log(1− x)
1+ log(1− x)

λ

The following proposition presents stochastic orders in terms risk measures.

Proposition 6.4. The random variable X is smaller than Y (over the union of the
supports of X and Y ) in the:

• Convex order (X ≤c Y ), if VaR(FX (x))(Y ) is convex on the support of X.

• Star shaped order (X ≤∗ Y ), if
VaRt(Y )
VaRt(X)

is an increasing function in t ∈

(0,1).

• Lorenz order (X ≤L Y ) if
CVaRu(X)

E(X)
≤ CVaRu(Y )

E(Y )
for all 0 ≤ u ≤ 1.

Other characterizations of interest are the following. A lower (upper) bound
for Lorenz curve is obtained when F is IFR (DFR), this matter is explained by the
following theorem:

Theorem 6.5. Let X be non-negative and continuous random variable with dis-
tribution function F and Lorenz curve L. If X is IFR (DFR) then µL(p) ≥ (≤
)VaRp(p−1)−

pVaRp

ln(1− p)
.
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Proof. Barlow and Proschan (Barlow and Proschan (1996)) showed that if F is
IFR (DFR) then {

F(t)≥ (≤)e−at ; t ≤ F−1(p),
F(t)≤ (≥)e−at ; t ≥ F−1(p),

(6.9)

where a =− ln(1− p)
F−1(p)

. Considering the definition of the Lorenz curve we have

µL(p) =
∫ F−1(p)

0
t f (t)dt =F−1(p)(p−1)+

∫ F−1(p)

0
F(t)dt,

≥ (≤)F−1(p)(p−1)+
∫ F−1(p)

0
e−atdt,

=F−1(p)(p−1)+
F−1(p)(exp(ln(1− p)−1))

ln(1− p)
,

(6.10)

=F−1(p)(p−1)− pF−1(p)
ln(1− p)

,

and using Equation (3.21) the proof is complete. □

Remark 6.6. It is worthwhile to note that if VaRp = − ln(1− p)
a

, it can be con-

cluded L(p) ≥ (≤)
1
a
[(1− p) ln(1− p)+ p] where (1− p) ln(1− p)+ p is expo-

nential Lorenz curve in Theorem 6.5, it shows the Lorenz curves of distributions,
which have increasing failure rate, have the Lorenz curve of an exponential distri-
bution as lower bounded.

Theorem 6.7. Suppose X1 and X2 be two non-negative random variables with
finite means. Let VaR1 and VaR2 are the value at risk for X1 and X2 respectively.

W (t) =
VaR1(t)
VaR2(t)

for all t ∈ (0,1) we have:

• If W (t) be increasing then X2 ≤L X1.

• If W (t) be decreasing then X1 ≤L X2.

• If W (t) be constant then X2 =L X1.
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Proof. To get the result, let us use Definition Lorenz order, which gives

X1 ≤L X2 ⇔ L1(α)≥ L2(α) f or all α ∈ (0,1)

⇔ L1(α)−L2(α)≥ 0. (6.11)

Suffice it to show that
∫ α

0 µ−1
1 VaR1(t)−µ−1

2 VaR2(t) is a non-negative function.
Let us define

D(t) = L1(t)−L2(t) (6.12)

=
µ2

µ1

(∫ α
0

(
VaR1(t)
VaR2(t)

− µ2

µ1

))
(6.13)

Note that L1(0) = L2(0) = 0 and L1(1) = L2(1) = 1, so D(0) = D(1) = 0. The
result is obtained according to the continuity of the function and the use of the
Roll’s theorem. □

Example 6.8. Let P(X1 = 1) = P(X1 = 2) =
1
2

and P(X2 = 2) = P(X2 = 5) =
1
2

.
We calculate

VaR2(α)

VaR1(α)


2 ; 0 < α ≤ 1

2
,

5
2

;
1
2
< α < 1,

(6.14)

Since
VaR2(α)

VaR1(α)
is an increasing function with α , therefor X1 ≤L X2.

Property 6.9. Let X be an random variable For any 0 < p < 1, the following
equalities hold (Denuit et al., 2006)

• If t is non-decreasing and continuous then F−1
t(X)(p) = t(F−1

X (p)).

• If t is non-decreasing and continuous then F−1+
t(X) (p) = t(F−1+

X (p)).

• F−1
X (p) = F−1

X (1− p) and F−1+
X (p) = F−1+

X (1− p)

Example 6.10. In this example, in order to use real data, the numbers related
to the S&P 500 index (daily close) during the two periods 2020-6-1-2022-6-1
and 2018-6-1-2020-6-1 have been used. Calculations related to data analysis,
and graphs are performed using R and EXCEL software. Estimation of Lorenz
curve ,that has not to do with income distribution but with the S&P 500 index
data, and VaR is performed by empirical method. Figure 7 presentations the daily
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chart of S&P 500 index in the days of June 2018 to June 1, 2020 and similarly
in the years 2020-2022. As shown in the figure, the lowest value of the index is
related to March 23, 2020 and the highest value of the index is related to June 9,
2020. Figure 8 shows the Lorenz curve on the left and the VaR risk curve on the
right for the the S&P 500 index during the two periods 2020-6-1-2022-6-1 and

2018-6-1-2020-6-1. Using the proposition 6.4, if
VaRX

VaRY
(X = 2020− 2022 and

Figure 7: S&P 500 daily index chart for the first days of June 2018 to the first of June 2020
and similarly for the years 2020-2022.

Y = 2018− 2020) is increasing, then the star order is established between these
variables, and therefore according to Figure 9, it can be concluded that there is no
star order between the data in these two years, and as a result, the Lorenz order will
not be established, which is quite clear in Figure 8. Theorem6.5, on the other hand,
clearly defines the Lorenz relationship between data using their VaR risk function.

According to this case, in the period when theW (t) =
VaRX

VaRY
(X = 2020− 2022

and Y = 2018−2020) is increasing, 2018-2020 has less inequality than in 2020-
2022, and in the period when the W (t) is ascending, 2018-2020 will have more
inequality than in 2020-2022. The results of this theorem are clearly shown in
Figures 8, 9 and Table 2.

7. CONCLUSION

Many important life decisions need to be considered and lightened and weighted
forward. Having financial knowledge and recognizing risk or return can help you
evaluate decision options. The Lorenz curve is an old measure in the economics
and the other branches of science to evaluate the income inequality of society. In
this paper we have obtained important and new properties of risk measures such
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Figure 8: The Lorenz curve (left) and Value at risk(right) for S&P 500 index during the two
periods 2020-2022 and 2018-2020.

Figure 9: Graphs
VaRX

VaRY
for S&P 500 index data.(X = 2020−2022 and Y = 2018−2020).

as value at risk and conditional value at risk. We have derived simpler expressions
for many relevant economic inequality and risk indices using reliability contects.
It was, also to concentrate on some properties of aging classes based on the Lorenz
curve and the other measures of risk. This paper indicates that the Lorenz curve
and risk measures can be used to qualify the aging concept of lifetime distribu-
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Table 2: The values of the Lorenz curve and the VaR risk function are speci-
fied in some places (X = 2020−2022 and Y = 2018−2020).

p LX(p) LY (p) VaRX(p) VaRY (p)

0.125 0.1 0.11 3349.425 2688.705
0.25 0.21 0.23 3636.145 2771.90

0.375 0.32 0.35 3907.764 2820.10
0.5 0.45 0.47 4165.555 2878.38

0.625 0.58 0.6 4315.290 2919.392
0.75 0.72 0.73 4435.638 2984.645

0.825 0.80 0.81 4500.410 3030.69

tions. The following conclusions were drawn from this research. The bound of the
class of lifetime distributions are determined in terms of its Lorenz curve and the
other index inequalities. Some interesting relationships that exist between com-
monly used notions in economic theory and reliability. Some new properties for
income inequality are obtained.
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