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Abstract Cognitive diagnostic models (CDMs) are a type of latent class models that link
observable data, such as questionnaire responses, to categorical latent variables, often
dichotomous in nature. CDMs are frequently used in educational testing to provide diag-
nostic information by identifying an examinee’s level of mastery in a set of predetermined
skills or attributes. However, parametric CDM estimation requires a relatively large sam-
ple size, which is often not feasible in assessments designed to inform classroom learning.
To address this issue, non-parametric or algorithmic approaches have been developed
that classify examinees by minimizing the distance between observed responses and ex-
pected responses for a given mastery profile. This study aims to evaluate a set of L2
distance measures for use in non-parametric classification in small-scale educational
settings. Results from simulations showed that the squared χ2 distance outperformed
or performed equally well to the commonly used Euclidean squared distance. Addition-
ally, test length was found to be a crucial factor in classification performance, with tests
containing more items and/or fewer attributes being preferred to compensate for small
sample sizes. An analysis of fraction subtraction data is provided as an example. Recom-
mendations for the use of non-parametric CDMs in the classroom are provided.
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1. Introduction

Cognitive diagnostic testing has emerged in educational assessment to bridge
the gap between psychometric theories of latent trait measurement and cognitive
theories for problem-solving (Leighton and Gierl, 2007; Zhang et al., 2023). The
cognitive diagnostic testing process assumes that an individual’s response to a
question is related to their mastery of specific skills or knowledge, referred to
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as attributes. The goal of this testing is to classify individuals into discrete at-
tribute mastery classes based on their responses to a series of carefully crafted
assessment items. Cognitive diagnostic tests are designed to assess the specific
knowledge a learner has or has not acquired, rather than quantifying their overall
level of knowledge with a single score. This discrete characterization is benefi-
cial in various ways, such as identifying errors (e.g., misconceptions or lack of
skill/knowledge) that impede problem-solving, creating diagnostic profiles of an
individual’s mastery level of specific skills, and providing guidance for both learn-
ers and teachers on areas of improvement and remediation (Zhang et al., 2023).

A class of statistical models known as cognitive diagnostic models (CDMs;
Leighton and Gierl, 2007) or diagnostic classification models (DCMs; Rupp et al.,
2010) have been developed to generate categorical classifications for multiple la-
tent attributes using scored assessment responses. CDMs are distinct from Clas-
sical Test Theory (CTT) methods or Item Response Theory (IRT) models in that
the latent variables in CDMs are discrete or categorical (i.e., indicating mastery or
non-mastery) rather than continuous. In other words, CDMs assign test-takers to
multidimensional attribute profiles by classifying them as masters versus nonmas-
ters of each atrribute involved in any given test, whereas CTT/IRT models assign
them scores on continuous scales representing more general abilities. Therefore,
CDMs may be preferred in situations where a more detailed assessment of specific
skills is desired.

CDMs are confirmatory in nature, meaning that the skills required to per-
form well on the test are specified in advance according to a substantive the-
ory, then tested against the real data. Let’s assume that ability in a given do-
main is a composite of K latent binary attributes. There are then 2K distinct at-
tribute profiles composed of these K attributes representing 2K distinct proficiency
classes. CDMs can be understood as restricted latent class models or probabilistic
confirmatory multidimensional models with categorical latent attributes, where
the model parameters are constrained by pre-assumed relationships between the
test items and the latent attributes they assess. These relationships are specified
through a binary matrix known as the Q-matrix. This matrix is similar to a load-
ing matrix in factor analysis with a complex loading structure, meaning there are
items that load to more than one factor. The correct specification of the Q-matrix
is crucial for providing accurate diagnostic results for each test taker. Therefore,
the matrix is usually provided by experts such as those who developed the items,
and the attributes should be defined at an adequately detailed level.

Numerous studies have focused on detecting distinct patterns of attribute
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mastery with CDMs (see Sessoms and Henson, 2018, for a review of the liter-
ature on specific applications of CDMs). In mathematics education, Bradshaw
et al. (2014) and Izsák et al. (2019) employed CDMs to diagnose middle-grades
teachers’ multiplicative reasoning and proportional reasoning, respectively. Ad-
ditionally, an online individualized tutor program based on the cognitive diagnos-
tic reports outperformed a traditional remedial instruction program (Wu, 2019).
Ravand (2016) and Ravand and Robitzsch (2018) illustrated the application of
CDMs to the reading comprehension data of high-stakes tests. More recently,
CDMs were used to assess students’ progressions of understanding of energy in
the physical science domain (Zhou and Traynor, 2022). There is some evidence
that cognitive diagnostic feedback can promote students’ learning and is more ef-
fective than correct-incorrect response feedback in promoting learning, especially
in more challenging areas of knowledge (Tang and Zhan, 2021).

Several probabilistic models for cognitive diagnosis have been developed
and widely applied in practice. Popular examples include the Deterministic In-
put Noisy Output “AND" gate (DINA) model (Junker and Sijtsma, 2001), the
Deterministic Input Noisy Output “OR" gate (DINO) model (Templin and Hen-
son, 2006), the Linear Logistic Model (LLM; Maris, 1999), the Additive CDM
(ACDM; De La Torre, 2011), the Reduced Reparametrized Unified Model (RRUM;
Hartz, 2002), the General Diagnostic Model (GDM; von Davier, 2005, 2008), the
Loglinear Cognitive Diagnosis Model (LCDM; Henson et al., 2009), and the Gen-
eralized DINA (GDINA) model (De La Torre, 2011).

The aforementioned models mainly differ in the way they represent the rela-
tionship between attributes and item responses. Disjunctive models, such as the
DINO model, assume that if an individual has mastered at least one of the at-
tributes specified for an item, the probability of a correct response will be high.
Conversely, conjunctive models, such as the DINA model, require mastery of
all attributes for an item to achieve the highest probability of a correct response.
General CDMs, such as the G-DINA, provide the most flexibility by relaxing
the potentially restrictive assumptions of the DINA model. The current methods
for fitting such models include marginal maximum likelihood estimation that uti-
lizes the Expectation Maximization algorithm (MMLE-EM) and Markov Chain
Monte Carlo (MCMC) techniques. However, parametric CDM estimation re-
quires a large sample size, typically several hundred examinees, which is much
larger than what is typical for assessments designed to guide classroom learn-
ing (For recent simulation studies, see Chiu and Chang, 2021; Chiu et al., 2018;
Paulsen and Valdivia, 2021; Sen and Cohen, 2021). This makes parametric mod-
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els less suitable for providing meaningful feedback about learning in small-scale
educational settings, where formative guidance from CDMs may be particularly
beneficial.

In response to these difficulties, non-parametric techniques have been de-
veloped to classify examinees into attribute profiles or groups (Chiu and Chang,
2021; Chiu and Douglas, 2013; Chiu and Köhn, 2019). Although they do not have
the same flexible probabilistic background as parametric models, non-parametric
CDMs require no statistical parameter estimation and they are often less computa-
tionally expensive and more efficient with small sample sizes. Based on an initial
I × J student response matrix, where each value indicates if student i ∈ 1,2, . . . , I
answered item j ∈ 1,2, . . . ,J correctly, Ayers et al. (2008) first derived the so-
called “capability matrix", a I×K matrix that shows for each attribute the propor-
tion of correct answers for all items tried by each student involving that attribute.
Then, they proposed to apply K-means clustering or the Gaussian mixture model
to the capability matrix to group examinees into different clusters with the same
attribute profiles. Similar approaches involve the application of hierarchical/K-
means clustering (Chiu and Douglas, 2013) and spectral clustering (Guo et al.,
2020) on the matrix with the summed scores of each student on the K attributes
on rows. One limitation of all these approaches is that they involve an additional
cluster labeling step to obtain the attribute profiles, because cluster analysis does
not provide labels for the derived clusters.

To overcome this issue, Chiu and Douglas (2013) proposed the non-parametric
classification method (NPC), which classifies examinees by minimizing the Ham-
ming distance between observed examinee responses and the “ideal" or expected
responses for a given attribute profile that would be implied by the Q-matrix (as-
suming no measurement error). The NPC calculates the ideal responses based
on either the DINA or the DINO model, making it less suitable when the model
underlying the data is more general. The General Non-parametric Classification
(GNPC; Chiu et al., 2018) improves upon the NPC by computing a weighted
version of the ideal response profiles of the DINA and DINO, allowing it to be
used with more general CDMs. Among all ideal item response profiles, an exam-
inee’s attribute profile is the one with the minimum squared Euclidean distance
to the examinee’s observed item response vector. The GNPC has been shown
to produce higher classification accuracy than parametric CDMs estimated using
the EM algorithm for small sample sizes (Chiu et al., 2018; Ma and Jiang, 2021)
and was used effectively in an algorithm for computerized adaptive testing (Chiu
and Köhn, 2019). Here, we limit our focus to non-parametric CDMs for binary
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(e.g., incorrect-correct) items, but a method for polytomously scored items has
also been recently proposed (Wang et al., 2022).

We note two fundamental contributions of this paper to the existing body of
literature. First, the paper aims to improve the GNPC algorithm by investigating
the effect of different distance metrics on its performance. The original GNPC
algorithm calculates the squared Euclidean distance between observed responses
and responses that are expected, based on a complex loading structure that speci-
fies the attributes required to answer an item correctly. The question addressed is
whether the squared Euclidean distance is the optimal choice among other com-
patible distances for the GNPC objective. Second, this is the first study to provide
a comprehensive evaluation of the GNPC performance in samples smaller than
30, similar in size to those found in classroom settings. To achieve this, various
experimental conditions were considered through a series of simulations using a
full factorial design.

The following sections are included in this paper: Section 2 reviews the NPC
and GNPC algorithms. In Section 3, alternative distance measures from the L2

family that can be used in the GNPC objective criterion are presented. Section
4 presents the results of a simulation study designed to evaluate the impact of
different distance measures. The proposed methodology is illustrated on a real
data set in Section 5. Section 6 discusses the results and concludes the paper.

2. Non-parametric cognitive diagnosis methods

In this section, we describe in detail the non-parametric classification method
(NPC; Chiu and Douglas, 2013) and the general NPC (GNPC; Chiu et al., 2018).
To start, we introduce the following notation which will be used throughout this
paper.

Let Q denote a matrix of size J ×K, where J is the number of dichotomous
items (i.e., correct/incorrect or 0/1) in a cognitive diagnostic test and K is the num-
ber of attributes or skills. The elements of the Q-matrix are 0 or 1, where q jk = 1 if
the jth item requires the kth skill and q jk = 0 otherwise. The Q-matrix is typically
created by the test developer and needs to be properly structured (see Köhn and
Chiu, 2015, for the definition of the Q-matrix completeness). The general form of
the Q-matrix is therefore:

Q =

q11 q12 . . . q1K
...

. . .
...

qJ1 qJ2 . . . qJK

.
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Let Y be a matrix of size I × J, where I denotes the number of students or
examinees. The elements of the Y matrix are 0 or 1, where yi j = 1 if the ith student
answered the jth item correctly and yi j = 0 otherwise. It has the general form:

Y =

y11 y12 . . . y1J
...

. . .
...

yI1 yI2 . . . yIJ

.

We use M = 2K to denote the total number of proficiency latent classes (i.e., binary
attribute profiles) and α1,α2, . . . ,αM are the distinct profiles in which examinees
can be classified, i.e.,

α1 = (0,0, . . . ,0K),α2 = (1,0, . . . ,0K),α3 = (0,1, . . . ,0K), . . . ,αK = (1,1, . . . ,1),
where the kth entry indicates whether the respective attribute has been mastered.

2.1. Non-parametric classification method

In the NPC method, the so-called ideal response profiles are calculated based
on either the DINA or the DINO model. These profiles express the ideal answers
that students would give if they belong to a certain attribute profile αm, where
m ∈ {1,2, . . . ,M}. The ideal responses for each item j and each latent attribute
profile αm are defined as follows (Chiu and Douglas, 2013):

ηDINA
jm =

K

∏
k=1

α
q jk
mk and ηDINO

jm = 1−
K

∏
k=1

(1−αmk)
q jk

for the DINA and the DINO model, respectively.
Here, ηm = (η1m,η2m, . . . ,ηJm) denotes the ideal response vector for the mth

attribute profile, where η jm can be the DINA or DINO ideal response.
Given the ideal response vector of each attribute profile, an examinee is clas-

sified to the closest profile that minimizes the distance between his/her observed
response vector yi, and the ideal response vector:

α̂i = argmin
m∈{1,2,...,M}

d(yi,ηm). (1)

where d(·) is a distance function. Chiu and Douglas (2013) used the Hamming
distance, where

dH(yi,ηm) =
J

∑
j=1

|yi j −ηm j|
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Given that the ideal responses implied by the DINA or DINO model are bi-
nary in nature, it can be observed that the absolute difference between the ob-
served response and the ideal response will be zero if they are equal, and one oth-
erwise. Furthermore, it can be demonstrated that utilizing the Euclidean distance
will yield identical results as using the Hamming distance. Lastly, it is relatively
straightforward to demonstrate that the NPC is equivalent to the 1-nearest neigh-
bor classifier when utilizing the ideal response vectors as the training data, with
each vector corresponding to a distinct attribute profile and the observed response
vectors as the test data.

2.2. General NPC

The NPC method may be constrained by its reliance on the assumptions of
the DINA or DINO model, which establish two distinct extremes. Specifically,
the DINA model requires that all item attributes be present and mastered in or-
der to endorse an item and produce the correct response, while the DINO model
stipulates that mastery of at least one item attribute is sufficient. To address this
limitation, the General NPC (GNPC) method proposed by Chiu et al. (2018) con-
siders a more general ideal response, which is a weighted average of the ideal
responses of the DINA and DINO models, as represented by the following equa-
tion:

η
(w)
jm = w jmη

DINA
jm +(1−w jm)η

DINO
jm (2)

where w jm is the weight for the jth item and the mth attribute profile. The weighted
ideal response vector for the mth attribute profile is denoted as η(w)

m =(η1m, . . . ,ηJm).
To estimate the weights, Chiu et al. (2018) proposed minimizing the squared

Euclidean distance between the responses to item j and the weighted ideal re-
sponses η(w)

m :

d jm = ∑
i∈Cm

(yi j −η
(w)
jm )2, (3)

where {Cm}M
m=1 is the partition of the subjects into M attribute profiles. The fol-

lowing cases can be distinguished:

• First case → ηDINO
jm = ηDINA

jm = 0 ⇒ η̂
(w)
jm = 0

• Second case → ηDINO
jm = ηDINA

jm = 1 ⇒ η̂
(w)
jm = 1
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• Third case → ηDINA
jm = 1 and ηDINO

jm = 0 ⇒ η̂
(w)
jm = y jm

where y jm =

∑
i∈Cm

yi j

Nm
and Nm is the number of students in Cm. It should be noted

that in all cases, the estimator η̂
(w)
jm is independent of the weight w jm.

The GNPC method begins with an initial partitioning of the examinees, typ-
ically provided by the NPC based on either the DINA or the DINO model (Chiu
et al., 2018). An examinee is classified by minimizing the squared Euclidean dis-
tance between their observed responses and the ideal response vectors estimated
from the previous step, α̂i = argmin

m∈{1,2,...,M}
d(yi, η̂m).

The GNPC algorithm is iterative in nature, beginning with initial values at
step t = 0, and subsequently updating the estimates at the (t + 1)-th step as fol-
lows:

α̂
(t+1)
i = argmin

m∈{1,2,...,M}
d(yi, η̂

(w)(t)
m ), η̂

(w)(t+1)
jm = y jm(t+1) .

The stopping criterion for the GNPC algorithm is typically ∑
N
i=1 I[a(t)

i ,a
(t−1)
i ]

N < 0.001,
where I[·] is the indicator function.

3. The Squared L2 distance family

As the GNPC is a distance-based approach, the selection of d(yi, η̂
(w)
m ) is

crucial for its performance, particularly in scenarios where it outperforms para-
metric methods, such as when dealing with small sample sizes characteristic of
classroom assessments.

In this paper, we focus on the Squared L2 distance family, also referred to as
the χ2 distance family, which encompasses a range of distance metrics including
Squared Euclidean, Squared χ2, Pearson’s χ2, Neyman’s χ2, Probabilistic Sym-
metric χ2, Divergence, Clark, and Additive Symmetric χ2 (Sung-Hyuk, 2007). It
can be shown that all of these metrics have the same minimum in the context of the
GNPC and therefore yield the same η̂

(w)
m . This means that they are interchange-

able and also satisfy the properties of stability, uniqueness, and minimization (see
Chiu and Köhn, 2019, for a discussion of the statistical consistency of the GNPC).
However, the Neyman χ2 and the Additive Symmetric χ2 distance cannot be used
in the context of the GNPC, as they involve division by zero. Table 1 displays
the expressions for each distance measure in the context of the GNPC. In other
words, the distance metric in Eq. 3 can be replaced by any of these measures.

8



Table 1: Distances of Squared L2 family

Distance metric Formula

Squared χ2
∑

i∈Cm

(yi j −η
(w)
jm )2

yi j +η
(w)
jm

Euclidean Squared ∑
i∈Cm

(yi j −η
(w)
jm )2

Pearson χ2
∑

i∈Cm

(yi j −η
(w)
jm )2

η
(w)
jm

Probabilistic Symmetric χ2 2 ∑
i∈Cm

(yi j −η
(w)
jm )2

yi j +η
(w)
jm

Divergence 2 ∑
i∈Cm

(yi j −η
(w)
jm )2

(yi j +η
(w)
jm )2

Clark

√√√√√∑
i∈Cm

(
|yi j −η

(w)
jm |

yi j +η
(w)
jm

)2

The anticipated impact of various metrics on the process of attribute profile
estimation is a topic of interest. It is noteworthy that the Pearson’s χ2 distance
weighs the squared differences based on the inverse of the ideal responses. Con-
sequently, the greater the discrepancy between the observed and ideal responses,
the more significant the corresponding component in the distance calculation. The
Squared χ2 and Probabilistic Symmetric χ2 distances, on the other hand, divide
the squared differences between the observed and ideal responses by their abso-
lute sum in order to emphasize similarities. Additionally, it is evident that Clark’s
distance employs a scaling mechanism in which smaller values are given greater
weight when dividing by smaller values.
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Table 2: Experimental factors considered in the simulation study

Factor Values considered
Q-matrix 7×2, 10×2, 13×3, 20×3, 50×3, 100×3, 20×4,

50×4, 15×5, 30×5
model for data generation GDINA, DINA, DINO, ACDM, LLM,

RRUM, mixed scenario
N 10, 15, 20, 25, 30
attribute correlation 0.3, 0.5, 0.8

4. Simulation study

Data generation
A simulation study was conducted to investigate the effect of each of the

six distance metrics in the Squared L2 distance family on the performance of
the GNPC. The subjects’ true latent attribute patterns were generated using the
multivariate normal threshold model, as described in Chiu et al. (2018). Each
examinee’s attribute profile was linked to a latent continuous ability vector θ =

θ1,θ2, . . . ,θK ∼ N(0,Σ), where the main diagonal of Σ was set to 1.00. The vec-
tors were randomly sampled, and the kth entry of the attribute pattern αi, αik, for
examinee i was determined by

αik =

{
1 if θik ≥ Φ−1 k

K+1
0 otherwise

,

where Φ is the inverse cumulative distribution function of standard normal distri-
bution.

Four factors were systematically manipulated, as illustrated in Table 2. The
attribute correlation levels were based on empirical levels of correlations found
in multiple domain assessments (Paulsen and Valdivia, 2021). This resulted in a
total of 10× 7× 5× 3 = 1,050 distinct data scenarios. In addition, 50 replica-
tions were made of each scenario, yielding a total of 52,500 data sets. The data
were generated under each condition using the simGDINA() function of the R
package GDINA (Ma and de la Torre, 2020). The modified GNPC algorithm was
implemented in an R function, which is available upon request from the first au-
thor. The initial partitioning of examinees was based on the NPC using the DINO
model. The recovery of attribute profiles was evaluated using the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985) between the estimated and true examinee
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Table 3: Agreement between distance metrics based on Pearson’s correlation and
mean ARI values

(2) (3) (4) (5) (6) Mean ARI
(1) Squared χ2 0.951 0.983 0.812 0.812 −0.066 0.542
(2) Euclidean Sq. - 0.951 0.784 0.783 −0.052 0.537
(3) Prob. Sym. χ2 - 0.812 0.811 −0.065 0.542
(4) Divergence - 0.966 −0.044 0.468
(5) Clark - −0.043 0.468
(6) Pearson χ2 - 0.111
Note: All correlations are significant at p < 0.01

profiles. Intuitively, the ARI measures the degree of agreement between an es-
timated partition and a reference partition. A value of 1 for the ARI represents
perfect agreement, while values close to 0 indicate almost random recovery.
Overall performance. Table 3 presents the correlations between the ARI values of
the six GNPC variants and the overall mean ARI of each method. All the correla-
tions are large enough (the largest being Cor(Squared χ2, Probabilistic Symmetric
χ2) = 0.983, followed by Cor(Divergence, Clark) = 0.966 and Cor(Squared χ2,
Euclidean Squared) = 0.951). This allows the assertion that one method may serve
as a substitution or predictor for another method (for instance, both Squared χ2

and Euclidean Sq. account for 99.14% of the variance in the other. Also notice
that the Probabilistic Symmetric χ2 distance is the Symmetric χ2 distance mul-
tiplied by 2. The best performing distance metrics are Squared χ2, Euclidean
Squared and Prob. Sym. χ2, followed by Divergence and Clark, whereas Pearson
χ2 had by far the poorest performance.
Performance by factor level. After examining the overall performance of the
Squared L2 family of distances, it is informative to determine if distance metric
performance is dependent upon specific situations, or if performance varies with
the factor levels. To investigate this, a repeated-measures ANOVA was conducted
on the true attribute profile recovery, as outlined in Table 4. The between-dataset
effects can be thought of as the influence of design factors across all distance met-
rics. To simplify the discussion, only main effects are modeled and discussed.
Furthermore, given the large sample size, it was expected that most factors would
be statistically significant; therefore, all effects were evaluated with respect to
their estimated effect sizes. Effect size was evaluated using partial eta squared
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(partial η2), calculated as the ratio of the sum of squares of the effects (SSE f f ect)
to the sum of squares of both the effects and the error (SSError).

The size of the Q-matrix had the largest effect on GNPC performance. As
the number of items increased and the number of attributes decreased, attribute
profile recovery significantly improved, from an ARI of 0.152 for 15 items and
5 attributes to an ARI of 0.759 for 100 items and 3 attributes. Additionally, the
model used to generate the data had a moderate effect on attribute profile recovery.
Interestingly, overall attribute profile recovery was better when the underlying
model was the DINO (ARI = 0.547) or the DINA model (ARI = 0.446), whereas
the worst performance was observed for the mixed model scenario (ARI = 0.416).
The correlation between attributes and the number of examinees had a very small
effect on attribute performance recovery.

Based on the lower half of Table 4 (within-dataset effects), the effectiveness
of distance metrics under different conditions was determined. Table 5 shows the
mean ARI values by factor level. The effect of the distance metric on attribute
profile performance was large. The top-performing group of distances includes
the Squared Chi-squared, Euclidean Squared, and Probabilistic Symmetric Chi-
squared distances, with overall mean ARIs of 0.542, 0.537, and 0.542, respec-
tively. Divergence and Clark formed a second group of distance metrics with
lower mean ARIs than those of the first group (0.468 and 0.469, respectively).
The Pearson Chi-squared distance had the lowest attribute profile recovery per-
formance (ARI = 0.113), indicating solutions that were almost random. The in-
teraction between the distance metric used and the size of the Q-matrix also had
a large effect on performance. However, a careful examination of the values in
Table 5 shows that this is due to the behavior of the Pearson Chi-squared distance,
which tends to perform even worse when all other metrics perform much better,
that is, for tests with many items (50 or 100). A moderate effect was also ob-
served for the interaction between the distance metric and the model underlying
the simulated data. The group of the three top-performing distances exhibited
a similar trend, with better attribute profile recovery when the underlying model
was the DINO or the DINA model, followed by the RRUM, the ACDM, the LLM,
the GDINA, and the MIXED model scenario. The Divergence and Clark distance
metrics did not follow this trend and performed better when the underlying model
was the DINO model, followed by the MIXED scenario, the LLM, the GDINA,
the ACDM, the RRUM, and the DINA model. Lastly, the degree of correlation
between attributes and the number of examinees appeared to have similar effects
on all methods.
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Table 4: Repeated-measures ANOVA for six distance metrics on ARI (factors are
ordered by decreasing effect size, partial η2).

Effect Source df SS F partial η2

Q-matrix 9 9110.311 9082.436 0.614
Between model 6 575.143 860.074 0.091
data sets att. correlation 2 13.964 62.645 0.002
effects N 4 6.485 14.548 0.001

Error 5734.212
distance 5 7338.221 115337.445 0.692

Within distance * matrix 45 2686.884 4692.301 0.451
data sets distance * model 30 243.786 638.613 0.069
effects distance * N 20 37.437 147.103 0.011

distance * att. cor. 10 7.281 57.217 0.002
Error 3273.451

5. Empirical illustration

The data set at hand includes responses from 504 test-takers to 12 ques-
tions related to elementary probability theory (as cited in Heller and Wickelmaier
(2013)). These questions assess the test-takers’ ability to calculate the probability
of the complement of an event (A1), the probability of two independent events
(A2), the classic probability of an event (A3), and the probability of the union of
two disjoint events (A4). The items range in difficulty, with some only requiring
one attribute, while others require up to three attributes. The data set and corre-
sponding Q matrix can be found in the R package CDM as data.cdm05.

As the true proficiency level of the test-takers is unknown, any evaluation
must rely on relative standards. To establish such a standard, we used Additive
CDM (ACDM) classification rates as a baseline, as this parametric model yielded
the brst fit in a previous study (Philipp et al., 2018). The full data set was then split
into 24 random subsets with 21 observations each, and re-analyzed with the GNPC
based on the six different distance metrics. In this way, the full sample classifica-
tion rates, which are expected to be more accurate, were used as a benchmark for
evaluating the GNPC variants’ performance with smaller samples.

The performance of the methods was assessed in terms of the patternwise
agreement rate (PAR), which is essentially the percentage of correct examinee
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Table 5: Attribute profile recovery of the GNPC based on the six different distance
metrics by size of the Q-matrix, the underlying model used to generate the data,
attribute correlation, and number of examinees (values of the Adjusted Rand Index)

Factor Level Sq. χ2 Eucl. Sq. Pr. S. χ2 Pear. χ2 Diverg. Clark
7×2 0.550 0.550 0.550 0.196 0.516 0.517

10×2 0.585 0.581 0.585 0.157 0.500 0.499
13×3 0.500 0.502 0.501 0.147 0.445 0.445
15×5 0.171 0.172 0.171 0.105 0.145 0.146

Q 20×3 0.585 0.579 0.585 0.123 0.493 0.493
20×4 0.346 0.344 0.345 0.138 0.292 0.292
30×5 0.306 0.306 0.306 0.119 0.258 0.258
50×3 0.840 0.820 0.840 0.049 0.693 0.693
50×4 0.579 0.566 0.580 0.075 0.502 0.501

100×3 0.957 0.948 0.957 0.023 0.834 0.834
0.3 0.539 0.535 0.539 0.098 0.456 0.456

att. 0.5 0.542 0.537 0.542 0.108 0.465 0.466
correl. 0.8 0.544 0.538 0.545 0.128 0.483 0.482

GDINA 0.514 0.503 0.514 0.109 0.446 0.447
DINA 0.578 0.594 0.578 0.119 0.404 0.404
DINO 0.635 0.630 0.635 0.135 0.625 0.624

model ACDM 0.518 0.509 0.519 0.113 0.447 0.446
LLM 0.518 0.509 0.518 0.109 0.454 0.453

RRUM 0.534 0.530 0.534 0.111 0.431 0.430
MIXED 0.496 0.482 0.496 0.081 0.47 0.471

N 10 0.517 0.510 0.517 0.118 0.479 0.479
15 0.533 0.528 0.534 0.114 0.473 0.472
20 0.547 0.543 0.547 0.111 0.467 0.466
25 0.554 0.548 0.554 0.107 0.464 0.465
30 0.558 0.554 0.558 0.104 0.458 0.458
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classifications defined as

PAR =

N

∑
i=1

I[âi = ai]

N
.

Table 6 reports the PAR values for each GNPC variant. The PAR values listed
in the cells of the table were computed in comparing the classification results of
ACDM on the full sample with those obtained for each of the six GNPC variants
methods in the 24 subsets. For example, the PAR values in the first column re-
sulted from comparing the classification of examinees obtained for each of the 24
subsets with GNPC (Squared χ2 distance) with their classification when it was
based on the full data set.

The findings suggest a high degree of average agreement (i.e., 0.91-0.92) for
the Squared χ2, Euclidean Squared, and Probabilistic Symmetric χ2 distances. It
should be noted that these were the three distance measures that performed the
best according to the simulation study. Furthermore, a transition from large sam-
ples to small samples did not greatly affect the agreement between the GNPC and
ACDM classifications for these distances. In concordance with the simulation
study, the Divergence and Clark distances displayed significantly inferior per-
formance, and the Pearson χ2 distance had the lowest attribute profile recovery
performance.

6. Discussion

In this paper, we conducted an extensive simulation study to evaluate the im-
pact of distance metrics on the performance of the General Nonparametric Clas-
sification (GNPC) method. We chose to focus on the GNPC method as it has
been shown to be the most effective algorithmic approach compared to parametric
models, particularly for small samples where the latter do not converge or produce
unstable results. The original GNPC algorithm calculates the squared Euclidean
distance between observed responses and responses that would be expected based
on a loading structure that specifies the attributes required to answer an item cor-
rectly. Our goal was to determine whether the squared Euclidean distance is the
optimal choice among other compatible distances for the GNPC objective. Re-
sults indicated that at least one of the three distance metrics led to the highest
attribute profile recovery. Similar findings were obtained in the analysis of a real
data set. The Squared χ2 distance and the Probabilistic Symmetric χ2 distance are
good alternatives and are recommended for use in the context of the GNPC, par-
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Table 6: Pattern-wise agreement rates (PAR) between the results obtained for each
of the six GNPC variants on 24 subsets and those of the ACDM on the full sample
(treated as the true proficiency level).

Sq. χ2 Eucl. Sq. Pr. S. χ2 Diverg. Clark Pear. χ2

1 0.9286 0.8810 0.8929 0.4286 0.6554 0.6429
2 0.8690 0.9286 0.9048 0.5952 0.6905 0.6905
3 0.8929 0.8810 0.8810 0.5357 0.6185 0.6310
4 0.9405 0.9167 0.9286 0.5238 0.7506 0.7381
5 0.9167 0.9286 0.9167 0.5238 0.6542 0.6667
6 0.9286 0.8571 0.9167 0.5119 0.5720 0.5595
7 0.9286 0.9405 0.9405 0.4762 0.7506 0.7381
8 0.9048 0.8929 0.9048 0.4524 0.6542 0.6667
9 0.9643 0.9286 0.9286 0.5833 0.7262 0.7262
10 0.9048 0.9643 0.9048 0.5357 0.7018 0.7143
11 0.9405 0.9405 0.9286 0.4524 0.7018 0.7143
12 0.9405 0.9048 0.8810 0.5357 0.7375 0.7500
13 0.9524 0.9286 0.9286 0.5595 0.8208 0.8333
14 0.9405 0.9048 0.9286 0.4643 0.6548 0.6548
15 0.9048 0.9167 0.8690 0.4643 0.5589 0.5714
16 0.9048 0.9405 0.9167 0.4762 0.6304 0.6429
17 0.9524 0.8929 0.9286 0.3690 0.6423 0.6548
18 0.9405 0.9286 0.9286 0.4524 0.8095 0.8095
19 0.8810 0.9048 0.9405 0.5595 0.7494 0.7619
20 0.9643 0.9167 0.9405 0.4881 0.7613 0.7738
21 0.9167 0.9167 0.9167 0.5595 0.6423 0.6548
22 0.8929 0.9167 0.9167 0.4881 0.7506 0.7381
23 0.9048 0.9762 0.9286 0.6071 0.7738 0.7738
24 0.9762 0.9524 0.9762 0.4286 0.8339 0.8214
Average 0.9246 0.9191 0.9187 0.5030 0.7017 0.7054
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ticularly for small samples. To the best of our knowledge, this is the first study to
evaluate the GNPC performance in samples smaller than 30, which are similar in
size to classroom settings. In such settings, test length is another important factor
to consider when using the GNPC for cognitive diagnostic assessment. Based on
our study results, the GNPC performs adequately for tests with 50 items or more
and 4 or fewer attributes. However, time constraints may prevent most educators
from administering tests of such length.

Another constraint of the non-parametric approaches discussed in this paper
pertains to the assumption that the Q-matrix is known and accurately specified by
domain experts. It is well-known that a misspecified Q-matrix can negatively af-
fect the classification of examinees (Kunina-Habenicht et al., 2012). While there
are some methods for estimating the Q-matrix in the literature (Chen et al., 2018;
Ren et al., 2021; Xu and Shang, 2018), developing methods for estimating CDMs
with unknown Q-matrices is a next step that is left for future work. Addition-
ally, in the CDM context, we assume that it is only the attributes involved that
contribute to the difficulty of an item. Thus, given an item with a definite set
of attributes associated with it, the difficulty of that item is also fixed, i.e., item
difficulty is embedded in the Q-matrix. However, this static perspective may be
unrealistic in the actual learning process, as human knowledge construction is
dynamic and should be accounted for within cognitive diagnostic modeling (see,
e.g., Gan et al., 2020, for a dynamic perspective). In addition, the GNPC can be
easily extended to polytomous data (e.g., incorrect, partially correct, correct) or
hierarchical structures among the latent attributes (Templin and Bradshaw, 2014),
by considering suitable definitions of the ideal responses and appropriate distance
measures between observed and ideal responses. Finally, given the relationship
between the NPC and the 1-nearest neighbor classifier, we can consider a modi-
fied version of the GNPC based on efficient modifications of the KNN algorithm
to deal with outliers (see, e.g., Liu and Chawla, 2011).
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