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Abstract We evaluate the level of mobility services and infrastructures in Milan to iden-
tify which areas are best equipped to serve citizens. We explore the overall degree of
smart mobility by ranking the 88 administrative districts according to their transporta-
tion services. A statistical analysis both quantifies and groups the neighborhoods by
their degree of mobility. We first built a set of composite indicators, including the AMPI
and the Static Jevons Index. The robustness of the index is validated through a sensitivity
analysis of behavior when varying the underlying indicators. A spatial cross-correlation
analysis is conducted to contextualize the degree of mobility estimated in the neighbor-
hoods with respect to some infrastructural variables. Second, the composite indices are
used to cluster the districts into homogeneous groups with similar mobility levels. The
results show that, whether using the indices individually or in combination, the cluster
analyses successfully distinguish key areas of the city, such as the interchange hubs, uni-
versity zones, city center, workplaces, and suburbs. We identify four classes of districts
characterized by increasing levels of smart mobility, and highlight critical differences
between the city center and the peripheral areas of Milan.

Keywords: Cluster analysis; Spatial cross-correlation; Aggregative indices; AMPI index; Mi-
lan NILs; Smart mobility;

1. Introduction

Some research has tried to provide answers and propose solutions to im-
prove different aspects of mobility management in large urban centers. In this
context, Businge et al. (2019) analyzed Milan’s metropolitan area to compare
models of public transportation and to evaluate their impacts and benefits. The
authors indicate that policies establishing disincentives for the use of cars, ac-
companied by a substantial investment in technological development aimed at
the greater diffusion of electric cars, were successful. Another approach is de-
picted in Battarra et al. (2018), who examined 11 large urban centers of Italy,
some of which represent the peculiar urban environments that characterize the
country. The study compared both the urban development structures and the
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presence of information and communication technologies (ICTs) and infrastruc-
ture. The results show that cities that invested large amounts of resources in
developing ICT infrastructures and smart urban transport systems met the high
standards for smart cities that have already been achieved by many European
cities.

In this paper, we measure the overall degree of smart mobility in the city
of Milan and identify the essential characteristics within the municipal terri-
tory. We also assess the levels of mobility services in Milan’s 88 administrative
districts, or Nuclei di Identità Locale (NIL), to determine which areas are best
equipped with respect to citizens’ needs. We propose a data-driven statistical
modeling approach to estimate the degree of smart mobility in the NILs. The
estimation algorithm is based on the construction of composite indicators that
summarize the level of mobility starting from a set of elementary variables. We
implement four composite indicators to quantify the mobility level, weighted
by the population of each neighborhood of the city based on a set of mobility
variables. Furthermore, estimates of the mobility degrees are accompanied by
a sensitivity analysis (i.e., a robustness check of the empirical estimates). The
estimated smart mobility values are then analyzed to answer two research ques-
tions.

The first question concerns the study of the factors that fostered the mobility
levels measured in the analyzed NILs. The second research question is related
to the identification of homogeneous groups of neighborhoods with similar mo-
bility levels. In answering both questions, we aim to understand whether the
estimated differences in smart mobility levels among Milan’s neighborhoods are
due to some social and economic phenomena (e.g., growing tourism in the city, or
the presence of commuters from surrounding provinces), or whether they are the
result of an exogenous pattern of urban development. To answer these questions,
we use two analytical tools. First, the spatial cross-correlation between indica-
tors and a set of infrastructure variables (school, health, tourism, and size) are
analyzed. The results allow us to further explore the spatial association between
mobility and the presence of essential services (infrastructure) for the popula-
tion. Second, we use a K-means clustering algorithm to cluster the NILs into
homogeneous groups with similar smart mobility levels. The combination of
the two approaches allows us to characterize the levels of smart mobility across
Milan in relation to the neighborhoods’ (infra)structural characteristics, and to
assess whether mobility can be associated with key aspects of citizens’ lives.

The remainder of the paper is structured as follows. In Section 2, we present
the case of Milan as an example of a smart city in the Italian context, highlight-
ing its strengths and weaknesses as discussed in the literature and comparing it
to other European cities. In Section 3, we present the concept of smart mobility
in detail, giving a definition of this development paradigm in light of the cur-
rent economic and urban development literature. In Section 4 we present the
neighborhood-level mobility data provided by the municipality of Milan. The
information is updated to 2018 and covers various spheres of mobility: public
transportation, bicycles, and ride-sharing. The data are used in the subsequent
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sections for the empirical analyses. In Section 5, we explain: (1) the statistical ap-
proach used to estimate neighborhood smart mobility levels using the composite
indicators (Section 5.1), (2) the sensitivity analysis for the robustness of the es-
timates (Section 5.2), (3) the spatial cross-correlation methodology and data on
the infrastructures considered (Section 5.3), and (4) the clustering analysis algo-
rithm used to identify the homogeneous groups of neighborhoods (Section 5.4).
In Section 6 we report the empirical results for Milan’s NILs obtained through
the procedure described above. Finally, Section 7 summarizes the main findings
and concludes the paper.

2. Milan: the Italian Smart city

The paper focuses on the study of mobility in the city of Milan. This focus
is motivated by several considerations. In particular, in 2014, the municipal ad-
ministration in Milan approved a document that defines the guidelines for mak-
ing Milan a smart city (Comune di Milano, 2022). The objectives to be achieved
are clear and well defined: there must be technological growth accompanied by
economic development, social inclusion, innovation, training, research, and par-
ticipation. The document states that the city must be:

• a global city, national and European laboratory;

• a laboratory of sustainable urban mobility;

• a laboratory of environmental and energy policies;

• a laboratory of social inclusion and diversity;

• a laboratory of well-being;

• a simplification workshop for public administration; and

• a business-generation workshop.

Milan 2030 (Comune di Milano, 2019b) is the articulated project that the
municipal administration is implementing for massive urban redevelopment that
will lead to the expansion of green areas, the deindustrialization of the city’s ter-
ritory with the related recovery of buildings, accessible urban development, and
the reorganization of public and private transport (Comune di Milano, 2019a).
Over the years, the city has been suffocated by private traffic, as reported in
the Milan Sustainable Urban Mobility Plan (PUMS). In fact, it was only in 2013
that an initial inversion between public (48%) and private (43%) traffic loads
could be observed, even though, of the 5.3 million daily trips, 2.3 million are in-
bound. This has led the administration to start thinking about radical solutions
for the management and reorganization of transportation in the city. New high-
way routes have been built to the north and east of the city, rail services have been
strengthened to facilitate access to the northwestern sectors, limited traffic zones
have been established (Areas C and B), pedestrian and bicycle lanes have been
extended, bike- and car-sharing services have been introduced, and metro lines
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have been expanded, to name just the most important changes. Over the years,
these interventions have produced considerable improvements in city traffic and
the quality of air and life in Milan. Other interventions are on the agenda, in-
cluding the reorganization of bus lines, the extension of metro lines beyond city
boundaries, and the construction of new highway and railway connections that
link the city more efficiently to the rest of the Lombardy territory.

Another interesting aspect of Milan is the administrative structure of the
city and its subdivisions. As well-described by Bernini et al. (2019), the munic-
ipality is divided into nine boroughs, the so-called municipi, each with its own
council and president . The nine borough councils are coordinated at the city
level by the city council, which decides the general rules for the use of goods
and services. On the other hand, borough councils have independent adminis-
trative power and responsibility on some local but important matters, such as
schools, social services, waste collection, roads, parks, libraries, and local com-
merce. Indeed, each borough includes districts with different social and cultural
aspects. Accounting for these characteristics, the city was further subdivided
into 88 districts with unique social and cultural identities called Local Identity
Neighborhoods (NILs).

Milan emerges as an important city in different studies. According to IC-
ity Rank, the annual report that photographs the most technologically advanced
and sustainable Italian cities, Milan has been ranked as the smartest city in Italy
for several years, followed by Florence and Bologna. Only in the last two years,
2020 and 2021 (ICity Rank, 2021),has Milan dropped from the number-one spot
but remained near the top of the list of the smartest cities. Furthermore, Milan
leads the mobility ranking, thanks to its vast public transportation network and
the spread of innovative carpooling services (with 24.3 cars per 10,000 inhabi-
tants). Its weakness is the modest extent of pedestrian areas, which is limited to
46.3 square meters per 100 inhabitants.

Looking outside Italy, Milan is comparable to the very best performing Eu-
ropean cities (Negri et al., 2020), for example, regarding forms of alternative
mobility, especially ride-sharing (with 2,224 cars per 1 million inhabitants). Mi-
lan is also heavily investing in sensors and in the enhancement of data collected
through, for example, the publication of open data (723 datasets in November
2019 vs. 292 and 250, respectively, in 2018 and 2017). In terms of the use and
evaluation of services by residents, Milan is well positioned and is most similar
to Barcelona (particularly in terms of the city app and online payment services).
Compared with Europe, however, the smart environment remains weak based
on access to green areas and air quality. Also, Battarra et al. (2018) argue that
cities in northern Italy have managed to achieve more efficient public transporta-
tion and better sustainability over time, also thanks to their considerable use of
ICT systems. However, in spite of these large investments, the results achieved
are not yet comparable with those of other large European cities (e.g., Amster-
dam). The aim of the institution of Area C, being a congestion charge, was to
reduce traffic within the historical city center, namely the Cerchia dei Bastioni,
thanks to telematic control of the gates, and to make local public transportation
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(LPT) faster, improving air quality. In support of LPT, the “traffic light prefer-
ence” that uses AVM technology and Wi-Fi reduces waiting times at traffic lights.
While they are stopped, users can find out the waiting times of vehicles through
the variable message Infopaline or by connecting to the Infomobility portal to
receive interactive and real-time information on disruptions, schedules, or crit-
ical issues. The service uses a multimodal route planner software program, a
platform for data acquisition and management through on-board systems.

The mobile ticketing system that uses near field communication (NFC) tech-
nology allows users to purchase and validate tickets directly with a cell phone.
Mobile Pass is based on NFC short-range technology that interacts with the elec-
tronic ticketing system of the transport company (ATM). The Infoalert service
reduces road congestion with information shared in real time and by sending
alerts through social networks or SMS for special situations (e.g., accidents, con-
struction sites, manhole flooding, political, and social events). The bike-sharing
service BikeMi (Maranzano et al., 2021) aims to increase cycling and facilitate
intermodality with LPT as well as GuidaMi, a car-sharing system that adheres to
the national circuit IO Guido.

Taking a different approach, the Digital Islands program increases sustain-
able mobility with the creation of computerized areas for supplying and recharg-
ing electric vehicles and providing services. They encourage the use of non-
polluting electric vehicles and provide services with multimedia touchscreens,
such as institutional information, SOS Point, cabs, infoviability, Wi-Fi, and NFC
payments. The Converse project experiments with new ways of implementing
low emission zones in urban areas by tracking the routes of heavy construction
vehicles.

Transportation represents an essential service in daily life Mariotti et al.
(2018). On one hand, people travel to reach offices and schools, for tourism, and
to visit family and friends; on the other hand, mobility is essential in modern
logistics and economic systems. According to the European Commission (Euro-
pean Commission, 2021), the transport sector contributes 5% to European GDP
and directly employs around 10 million workers. According to the annual report
from the European Environmental Agency (European Environmental Agency ,
EEA), transportation is one of the main sectors responsible for total emissions.
However, on a positive note, the extent of pollutants has declined over the years
despite the growth of mobility.

Even though the European transportation sector has achieved significant re-
ductions in the emissions of certain major air pollutants, more work is needed
to continue to reduce pollution levels and to achieve the “zero pollution” am-
bition set by the European Green Deal, which has targeted a 90% reduction in
transportation emissions by 2050. As a result, there is growing political, me-
dia, and public interest in air quality issues and increased public support for
action. Moreover, the spread of COVID-19 has posed serious challenges for the
global community: as observed during the lockdowns, a substantial reduction in
mobility might have important, yet unknown, implications for air quality. For
example, Ciarelli et al. (2021) found that lockdown measures reduced nitrogen
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dioxide (NO2) air concentrations by up to 46% and 25% in the Po Valley and
Swiss Plateau regions, respectively, whereas fine particulate matter (PM2.5) air
concentrations were reduced only by up to 10% and 6% in each location.

3. Smart Mobility in a Smart City: a new paradigm

In recent years, the idea of the smart city has attracted growing interest, as
most of the global population lives in urban contexts and new emerging prob-
lems are affecting urban ways of life. With the expansion of cities and increasing
technological developments, new needs are being defined that necessitate the
search for innovative and strategic solutions, such as co-working Mariotti et al.
(2017). At the same time, great migratory movements and globalization con-
tributes to profound changes in the social fabric as well as in language, which
absorbs and assimilates new vocabulary, becoming varied with new idioms Arn-
aboldi et al. (2017). Specifically, the concept of the smart city has been recently
introduced as a strategic means to establish a common framework on the grow-
ing importance of ICT, social, and environmental capital in profiling cities’ com-
petitiveness and sustainability Caragliu et al. (2011). In Balducci and Ferrara
(2018), the authors identified the key components that synthesize the complex-
ity of smart policy at urban level and defined several smartness domains (e.g.,
diffusion of IT, green energy, smart mobility, etc.) for the cities. The smartness
domains were then used to investigate the spatial interactions among nearby
cities and to evaluate the impact on territorial and socio-demographic aspects
of the innovations introduced by municipal policies to transform urban centers
into smart cities.

Whereas there is no univocal definition of a smart city in the literature, as
it is a multidimensional and fuzzy phenomenon, three main strands of thought
can be identified. The first is the deterministic vein (“hard”), which is focused on
technology. Harrison et al. (2010) argue that a smart city is characterized by the
three I’s: instrumented, interconnection, intelligent. The second strand (the “soft”
vein) emphasizes the importance of human capital. Florida (2003), for example,
exposes the importance of the three T’s in explaining the economic development
of a city through the concept of a new geography of creativity: tolerance, tal-
ent, and technology. The third vision combines the “hard” and “soft” aspects
and highlights the fundamental role played by the government and community.
Albino et al. (2015) explains a smart city as a smart community of common or
shared interests, whose members, organizations and governing institutions are
working in partnership to use IT to transform their circumstances.

Furthermore, there is no consensus on what qualifies as the dimensions of a
smart city. However, one of the most recognized and used models, the “Vienna
Model” proposed by Giffinger et al. (2007), distinguishes six main smart cate-
gories: smart economy, smart people, smart governance, smart mobility, smart
environment, and smart living. Cities performing highly in all these categories
can be considered a smart city.

Moving to more practical ideas, new urban theories are shaping the struc-
tures of cities. In recent years, and especially during the COVID-19 pandemic,
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the 15 minutes city model proposed by Moreno et al. (2021) is growing in pop-
ularity. Multiple major cities around the world, with Paris (Bouveyron et al.,
2015), London, and Helsinki (Piter et al., 2022) as the leaders, are designing and
shaping their communities to meet the goal that is the foundation of this new
urban planning theory: allowing people to access essential services and ameni-
ties by foot or bike in a very short time. Living and working near where ser-
vices are provided can be considered an incentive to massively reduce the use of
cars and consequently traffic congestion while adopting public transportation or
ride-sharing options.

Whatever scientific contribution one considers, smart mobility is one of the
main drivers of a city’s smartness. Indeed, a smarter transportation framework
must be developed in the smart city context to improve people’s lifestyles and
mitigate traffic and environmental issues affecting urban conditions. Several
studies investigated which characteristics should be respected to make the mo-
bility sector as smart as possible. Consider, for example, road safety manage-
ment (Francini et al., 2014), accessibility, sustainability and innovation (Chen
and Silva, 2021). Also, great attention was given to the use of new technologies
(Battarra et al., 2017) and to innovations aimed at older generations (Boscacci
et al., 2014).

However, as for the general definition of smart city, no univocal vision of
the smart mobility concept was identified so far. Giffinger et al. (2007) highlight
these main features to describe the mobility of a city, considering mainly the
transportation and ICT sectors:

• local accessibility,

• national and international accessibility,

• availability of ICT infrastructures, and

• sustainable, innovative and safe transport systems.

Lombardi et al. (2012) propose considering logistics and infrastructure as the
main factors behind the development and improvement of smart conditions in
cities. More recently, Francini et al. (2021) published a review paper aiming
at collecting the descriptions of smart mobility available in the literature and
harmonizing them into a shared definition using a systematic literature review
approach supported by a cluster analysis. According to their findings, a suitable
definition of smart mobility is "the result of a planning process which makes use of
technological supports in the simulation phases, use and monitoring of individual and
shared transport systems to ensure safety standards, functionality and sustainability”
(Francini et al., 2021, Section 4).

Eventually, by recalling the main challenges affecting urban environments
and analyzing the various definitions in the literature, the concept of smart mo-
bility can be clarified by examining three areas:

• respect for the environment: through the creation of efficient transportation
systems that consider energy consumption, pollution, and environmental
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consequences, but also through improved planning and the efficiency of
public transportation options (e.g., adopting real-time data analytics, ma-
chine learning in autonomous vehicles, sensors, data platforms, and soft-
ware);

• improvement of the economy: y maximizing productivity and management;
and

• improvement of the society: by increasing citizens’ quality of life and reduc-
ing congestion, for instance, through car- and bike-sharing, resulting in a
decline in citizens’ frustration.

The transition to smarter and more environmentally friendly mobility pat-
terns is becoming one of the most relevant aspects of urban policy, and many
cities around the world are implementing smart solutions to project their city
into the new era of urban transportation. Nevertheless, the commitment in this
field varies significantly among cities; in addition, investments are often focused
on different strands: technology, public transportation, and disincentives to car
adoption. Moreover, the intrinsic characteristics of each city can shape decisions
and the implemented measures. For this reason, in the last decade, greater atten-
tion has been placed on measuring cities’ performance on smart mobility. Simple
and composite indicators represent the most versatile instruments to compare
cities in terms of transportation and its sub-aspects.

Chen and Silva (2021) collect and present one of the largest sets of indica-
tors, including 49 items, to investigate interventions and the developments of
the smart transport sector in English metropolises. Key aspects such as private,
public, and emergency transport, on one hand, and accessibility, sustainability,
and innovation in mobility on the other hand, are measured using detailed in-
dices and a global index. A similar methodology and study scope are considered
by Battarra et al. (2018), who examined Italy’s 11 metropolitan cities, taking into
account 28 mobility parameters in three categories: accessibility, sustainability,
and ICT. A different vision is proposed by Debnath et al. (2014) in the creation of
a transportation index for 26 world cities. A narrower view for smart transport
is considered, combining 66 indicators measuring the implementation of ICT
technologies in multiple mobility sub-systems (private, public, and commercial
and emergency). Useful insights emerge evaluating the temporal implementa-
tion of smart measures as explored by Pinna et al. (2017) in the calculation of
a smart mobility index for 22 average Italian cities. Significant heterogeneity in
the implementation of smart solutions is present between northern and south-
ern metropolises, and different growth patterns emerged over the time period
considered.

The analysis of the differences among cities and the characteristics of the
smartest ones can highlight best practices and possible paths to follow in the fu-
ture. Battarra et al. (2018) show a positive relationship between investments in
sustainability, ICT, and accessibility and performance in terms of smart mobil-
ity. Chen and Silva (2021) found that cities with higher scores on both private
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and public indices have the highest levels of accessibility and innovation and are
characterized by higher populations and better economic performance. How-
ever, critical issues, representing possible room for improvement, can emerge
even in the smartest urban areas. Aletà et al. (2017) show a dual and opposite
situation in Spanish cities performing well on smart mobility (71% are above the
target) while having poor results for the smart environment (only 23% are above
the target).

4. Data on smart mobility in Milan

To investigate the pattern of the development of smart mobility in Milan, we
collected data through the open database provided by the municipality of Milan
(available at http://dati.comune.milano.it/organization/comunedimilano).
Available data concern the 88 administrative neighborhoods of the city, namely,
the NILs , which are the smallest spatial subdivisions of the municipality. The
complete list of Milan’s NILs is reported in the Appendix A.2.

We considered a set of variables that characterize smart urban mobility along
three relevant dimensions: public transport means, sharing mobility means, and
mobility infrastructures. All the considered variables refer to 2018. To control
for potential scale effects that could generate bias in the values associated with
each neighborhood, we further considered the population of each NIL registered
on January 1, 2018. As defined by ISTAT (2016), the resident population is the
number of persons habitually resident in the municipality, even if on the consid-
ered date they are absent because they are temporarily present in another mu-
nicipality abroad. We use this variable as a weighting factor to create composite
indicators. All the considered variables are weighted by the resident population
and converted into per capita values.

In this section, the selected measures are briefly described. For public trans-
port means we used the following variables:

• Number of metro stops: The number of metro stops in each NIL;

• Weekly metro rides: the number of weekly metro rides divided by the num-
ber of work days (Monday to Friday) and for Saturday and Sunday. Assum-
ing a standard week, we multiply the number of weekly rides on working
days by five and the number of rides on the other two days by one. For
each station, the total weekly number of trips is calculated by summing
the number of weekly rides of all routes passing through that station. For
each NIL, the final value is computed by averaging the weekly trips of all
stations belonging to the district;

• Number of tram stops: the number of tram stops in each NIL;

• Weekly tram rides: the number of weekly tram rides divided by the number
of weekdays (5), and for Saturday and Sunday (see the explanation of the
calculation of weekly metro rides above);

• Number of bus stops: the number of bus stops in each NIL;
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• Weekly bus rides: the number of weekly bus rides divided by the number
of weekdays (5), and for Saturday and Sunday (see the explanation of the
calculation of weekly metro rides above);

• Number of trolleybus stops: the number of trolleybus stops in each NIL; and

• Weekly trolleybus rides: the number of weekly trolleybus rides by the num-
ber of weekdays (5), and for Saturday and Sunday (see the explanation of
the calculation of weekly metro rides above).

Regarding sharing mobility means, we considered the following variables:

• Number of GuidaMi stations: the number of stations in each NIL;

• Number of parking spaces GuidaMi: the number of parking spaces for GuidaMi
in each NIL. Each station has a different number of parking spaces; the
variable is calculated as the sum of all parking spaces at each station;

• Number of BikeMi racks: the number of BikeMi racks in each NIL;

• Number of BikeMi slots: each BikeMi rack has a different number of spaces;
the final variable is the sum of all spaces at each BikeMi rack.

Finally, for mobility infrastructures we used the following variables:

• Number of recharging columns: the number of columns for electric recharg-
ing in each NIL;

• Number of bike racks: the number of bike racks in each NIL;

• Number of bike slots: each bike rack has a different number of spaces; the
final variable is the sum of all spaces at each bike rack.

The full list of considered variables is synthesized in Table 1, which reports
the list of basic indicators and their descriptions. Note that the number of stops
and the number of rides for each means of transportation have to be considered
separately; hence, we considered four variables for the stops and four for rides.

Variable Description

Metro/tram/bus/trolleybus stops Number of metro/tram/bus/trolleybus stops in each NIL
Metro/tram/bus/trolleybus rides Average weekly metro/tram/bus/trolleybus rides in each NIL
Parking spaces GuidaMi Number of all GuidaMi parking slots in each NIL
BikeMi slots Number of all BikeMi slots in each NIL
Recharging columns Number of columns for electric recharging in each NIL
Bike slots Number of all bike slots in each NIL
Population Resident population in each NIL updated to 2018

Table 1: Description of the considered variables

Descriptive statistics for the considered mobility indicators are reported in
Table 2.
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Variable Mean Median Std. Dev. CV Min Max

Number of metro stops 1.02 0.00 1.43 1.39 0.00 6.00
Weekly metro rides 1503.00 0.00 1781.22 1.19 0.00 5510.00
Number of tram stops 5.67 1.00 8.88 1.57 0.00 42.00
Weekly tram rides 538.00 370.00 594.56 1.10 0.00 2753.00
Number of bus stops 13.14 10.00 13.87 1.06 0.00 68.00
Weekly bus rides 546.00 589.00 283.28 0.52 0.00 1175.80
Number of trolleybus stops 2.09 0.00 4.20 2.01 0.00 20.00
Weekly trolleybus rides 416.70 0.00 629.65 1.51 0.00 1981.00
Parking spaces GuidaMi 5.05 2.00 7.70 1.53 0.00 37.00
Number of BikeMi racks 92.34 0.00 149.11 1.61 0.00 777.00
Number of recharging columns 0.70 0.00 1.33 1.89 0.00 7.00
Number of bike racks 215.90 157.00 314.44 1.46 0.00 1874.00
Resident population 15855.39 14750 12944.49 0.82 2 62438

Table 2: Descriptive statistics of the considered variables

From Table 2, almost half of the sample variables report a median value
equal to zero, suggesting a lack of specific services in the majority of the NILs.
This is particularly significant for the number of metro stops, the number of
trolleybus stops, the number of BikeMi racks, and the number of recharging
columns. When analyzing the variability of the data, we find that the least het-
erogeneous variables are the weekly bus rides and the number of bus stops,
which are characterized by a low coefficient of variation. This could indicate
a wider presence of the bus services in the Milan area, with lower differences
among neighborhoods compared to the other transportation services, such as
the number of trolleybus stops, which shows the highest variability coefficient.

In Figure 1, we provide a spatial representation of the considered means
of transport and infrastructure in Milan. This visualizes the presence and dis-
tribution of these resources across the municipal territory. We provide domain-
specific maps for public transport (upper panel), sharing mobility (central panel),
and mobility infrastructure (lower panel). Generally speaking, all three maps
consistently show that Milan suffers from a deep concentration on mobility in
the city’s center, while the suburbs are not adequately covered. In the upper
panel of Figure 1, the map shows a heterogeneous distribution of bus stops in al-
most all the NILs (e.g., the southern area is poorly covered). On the other hand,
metro and tram stops are largely present in the city’s center and have branches
that move toward the suburbs, where they are sparse. Trolleybus stops reveal
a particular pattern since they create a circular path around the city’s center.
Smart vehicles (central panel) are concentrated in the central NILs. However, the
northern part of Milan shows a greater presence compared to all the other sub-
urbs where they are almost absent. Also, the number of BikeMi stops is higher
than the number of car-sharing stations. Finally, the bottom panel highlights a
wider presence of bike racks in almost all neighborhoods and a prevalence of
recharging columns in the central NILs.
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Figure 1: Spatial availability of pubic transport means (upper panel),
sharing mobility (middle panel) and mobility infrastructures (lower panel)

in Milan.
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5. Statistical modeling

In this section, we depict the statistical process used to quantify the smart
mobility degree of each NIL of Milan. We then group them into homogeneous
groups with similar mobility levels.

5.1. Composite indicators

Composite indicators (Mazziotta and Pareto, 2013) are now the cornerstones
of official statistics dealing with spatial measures of socio-economic well-being
(consider the papers by Mazziotta and Pareto (2014, 2022) for the study of het-
erogeneity in well-being among Italian regions and by Mazziotta (2017) for the
case of municipalities in southern Italy) and competitiveness (see, for example,
the study by Scaccabarozzi et al., 2022, on municipal competitiveness, under-
stood as municipality’s ability to offer an attractive and sustainable environment
for firms and residents to live and work). Here, we create a set of mobility mea-
sures using a composite approach to quantify the degree of mobility in the NILs.
First, we choose and normalize a group of elementary indicators, computed as
the ratio between the selected variables related to mobility and the 2018 resi-
dent population of each neighborhood. Second, we aggregate these elementary
indicators using four composite indicators: the geometric mean, the mean of the
rescaled values within the range 0– 1 (Mean 0–1), the Adjusted Mazziotta– Pareto
Index (AMPI) and the Static Jevons Index (JJI) (Mazziotta and Pareto, 2017).

Let j = 1, ...,m = 12, be the subscript of the elementary indicators, and let
i = 1, ...,n = 88 be the subscript for each NIL. Recall that the AMPI index is based
on a min–max transformation of the original values such that the normalized
values (yij ) are constrained in the range 70 to 130. Denoting the mean with
Myi , the standard deviation with Syi , and the coefficient of variation cvyi of the
normalized values yij for unit i, the composite index is given by the following
formula:

AMP I+/−
i = Myi ± Syicvyi (1)

where the sign ± depends on the kind of phenomenon to be measured. In par-
ticular, when the composite index is positive — that is, increasing values of the
index correspond to positive variations of the phenomenon — then AMPI− is
used. On the contrary, if the composite index is negative — or increasing val-
ues of the index correspond to negative variations of the phenomenon — then
AMPI+ is used. The previous formulas suggest that AMPI decomposes the score
of each unit into two parts. The first part is Mzi , which represents the mean level
of the indicator, while the second is Szicvzi , often referred to as the penalty term,
which penalizes the average for the units with unbalanced values of the indica-
tors. The latter term has the objective to reward the units with a greater balance
among the values of the indicators. To highlight those NILs with a particular
and unbalanced presence of transportation services, we considered a negative
penalty function defined by inverting the original polarity2.

2Polarity of the elementary indicators is the sign of the relationship between the indicator
itself and the phenomenon. When an indicator is positively related with the phenomenon of
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The JJI for unit i represents the geometric mean of the index number of all
the elementary indicators. The JJI is defined as follows:

JJI ti =
m∏
j=1

((xtij )/(x
t
rj ) · 100)1/m (2)

where xtrj is the reference value, for instance the average, and xtij is the value of
indicator j for unit i, at time t ∀xtij > 0 (j=1,. . . ,m; i=1,. . . ,n; t=t0, t1).

Different features emerge comparing the approaches used in the calculation
of each index. The main ones to be considered are the compensation and the sub-
stitutability among base indicators (Mazziotta and Pareto, 2022). These proper-
ties are relevant since each elementary indicator generally represents a specific
dimension of the studied phenomenon. The overlap and compensation among
them represent critical aspects to be considered in creating the index (Bacchini
et al., 2020). The JJI is partially compensatory, as it is based on the geometric
mean of the index numbers. It is a sensitive composite index due to the fact
that it is based on a normalization (indicization), which gives implicitly weights
according to the variability (Mazziotta and Pareto, 2018). The AMPI index is
partially compensatory and enjoys the helpful quality of non-substitutability,
meaning that all the elementary indicators used to compute it have all the same
importance and a full compensation among them is not allowed (i.e., it is not
possible to compensate the value of one indicator with that of another). More-
over, the AMPI is able to guarantee the spatial and time comparability of the
units (Mazziotta and Pareto, 2018). It has simple and transparent calculations, is
immediately usable, and it is easy to interpret the results. However, it seems that
there is not a composite index that is universally valid for all areas of research;
therefore, the index’s validity depends on the strategic objectives of the research
(Mazziotta and Pareto, 2014).

5.2. Influence analysis

Once the composite indicators have been computed, we implemented a leave-
one-out influence analysis to assess its robustness when individually exclud-
ing each of the elementary indicators. Following the methodology proposed by
Mazziotta and Pareto (2017) and (Scaccabarozzi et al., 2022), we compared the
indices according to several descriptive statistics computed using the distances
between the values of the indicators estimated, including or eliminating each
of the underlying elementary variables. In general, we considered as robust an
indicator that shows low variability and low average gaps when the sub-indices
differ.

Let rij be the rank, or position, of the ith NIL computed without the jth in-
dicator and let ri be the rank of the ith NIL computed using all the elementary
indicators j = 1, ...,m = 12. The algorithm consists of dropping each jth elemen-
tary indicator from the list of m base indicators and then re-calculating the in-

interest, it has a positive polarity; when it is negatively related with the phenomenon, it has a
negative polarity (Alaimo et al., 2021)
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dex using the remaining m−1 indicators. At each iteration j, the algorithm com-
putes for each ith NIL the absolute difference (or shift) between its position in the
full-index ranking and its position in the leave-one-out ranking, i.e. dij = |rij-ri |
∀i = 1, ...,n = 88. With m = 12 elementary indicators, for each aggregative indi-
cator, the algorithm returns 12 vectors of shifts.

The sensitivity of each composite indicator is evaluated as follows. First,
we computed the sample mean and the sample standard deviation for all the
vectors of shifts. This step produced m = 12 averages (X̄) and m = 12 standard
deviations (SX). Second, the above metrics are summarized by computing the
corresponding sample averages, sample standard deviations and sample vari-
ability coefficients (i.e. the ratio between the standard deviation and the mean).
Then, for each indicator, we obtained six descriptive statistics: the global average
shift (µX̄), the standard deviation of the average shifts (σX̄), the variability coef-
ficient of the average shifts (VCX̄), the average standard deviations of the shifts
(µSX ), their standard deviations (σSX ), and their variability coefficients (VCSX ).
To achieve the highest possible robustness, an indicator with a low degree of
variability (i.e. low µSX and low VCSX ) and/or with a low degree of variability in
the shifts (i.e. low µX̄ and low VCX̄) has to be preferred over the others.

5.3. Spatial cross-correlation analysis

This section is devoted to understanding the relationships between mobility
and the land use of each NIL. Means of transport are generally designed to serve
specific purposes of the population. We investigated the presence of a correla-
tion between the smart mobility indices previously created and the presence of
essential services (infrastructures) for the population. We collected further data
for the city of Milan covering key aspects of the city, such as tourism, educa-
tion, and health. In total, we considered seven variables aggregated by NIL, in
addition to the area and the NILs’ population density. The population density
for each NIL was calculated as resident population divided by area, where the
area is measured in square kilometers. To estimate mobility levels, we used the
infrastructure information that was updated in 2018 or the latest version avail-
able. The infrastructure variables are listed in Table 3. The list includes the list

Variable Description

Area The area in KM2 of each NIL
Population density The population density of each NIL as resident population/area
Number of hospitals The number of hospitals in each NIL
Number of hospital beds The number of beds available in all the hospitals of each NIL
Number of schools The number of high schools in each NIL
Number of school students The number of students attending the high schools present in each NIL
Number of university campus or headquarters The number of university campuses/headquarters in each NIL
Number of hotels The number of hotels in each NIL
Number of hotel rooms or beds The number of rooms/beds available in all the hotels of each NIL

Table 3: Structural variables used for spatial cross-correlation analysis

of variables that describe and quantify the socio-demographic and infrastructure
features of the city that are not related to mobility, but that could be influenced
by or affect municipal policy choices on enhancing the mobility of NILs. Specif-
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ically, we considered the area of neighborhoods; population density (2018 resi-
dent population divided by area); the number of hospitals and beds; number of
schools, students, and university centers; and the number of hotels, rooms, and
beds. Figure 2 presents the spatial distribution of the studied infrastructures.
For high schools, the dimension of the dots depends on the number of attending
students; for hospitals, it depends on the number of beds; for hotels, it illustrates
the number of beds; and for universities, large dots represent the headquarters,
while small dots represent the other campuses. The map shows that the infras-
tructures considered are mainly located in the city’s center (i.e., Area C) and the
northern neighborhoods. This is especially true for hotels, which are concen-
trated in the historic center and commuting areas. Schools and hospitals, on the
other hand, are more widely distributed. Figure 3 represents the visualization of

Figure 2: Spatial distribution of the studied infrastructures

the Population and the Population density of each NIL in Milan.
To further characterize the estimated smart mobility levels with respect to the
territory of Milan, we quantified the spatial cross-correlation for each of the
four composite indicators against a set of variables concerning the main socio-
economic infrastructure of the city. The spatial cross-correlation analysis is based
on the decomposition of the Pearson’s linear cross-correlation index into its di-
rect and indirect spatial components, as proposed by Chen (2015). Spatial de-
pendence is measured by an inverse power decay function calculated using the
distance between the centroids of each neighborhood. The author interprets
Moran’s spatial autocorrelation index (Moran, 1950) as a general case of the
Pearson’s linear statistic (Chen, 2013) and decomposes the latter into (1) an indi-
rect spatial cross-correlation component measuring the indirect correlation be-
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Figure 3: Spatial distribution of the population (upper panel) and its density
(lower panel) in each NIL in Milan
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tween variables X and Y through the spatial distances and other elements in a
geographical system (i.e., the Spatial Cross-Correlation Index, or SCI), and (2)
a direct spatial cross-correlation measure between X and Y , which is free of
the spatial distance and spatial interactions between NILs (i.e., the Partial Spa-
tial Cross-Correlation Coefficient, or PSCC). Following the notation proposed by
Chen (2015), the decomposition is defined as follows:

R0 = Rp +Rc, (3)

where R0 is the Pearson’s linear correlation index, Rc is the SCI and Rp is the
PSCC. The PSCC and the SCI can be interpreted as a direct correlation without
a distance effect and an indirect correlation based on the distance decay effect,
respectively. This decomposition has been used in various contexts, including
mobility-related research. For example, in Jin et al. (2019), the SCI index is used
as a measure of competition (positive sign) and complementarity (negative sign)
between the presence of Uber cabs and public transportation in New York City.
Other recent applications include the real estate market in Turkey (Moralı and
Yılmaz, 2022) and the relationship between population fragility and COVID-19
in England (Nicodemo et al., 2020). While not indicating anything about the
direction of causality between the relationships, the SCI and PSCC measures, as
well as the Pearson’s index, can give a broad indication of the criteria behind
the choices made by municipal administrations in enhancing mobility and what
might be the future drivers of mobility allocations. Indeed, we expect that where
more infrastructure exists, the degree of mobility will be higher. In addition, a
systematic mapping of key infrastructure with respect to the current mobility
system is an essential tool for the design of strategic structural policies.

5.4. Cluster analysis

Cluster analysis techniques have become increasingly popular in applica-
tions related to smart cities, mobility, and urban studies. A research question
of great interest concerns the identification of geographic patterns (e.g., groups
of cities or groups of regions) partitioning the territory into homogeneous ar-
eas based on local mobility degree, demography, economy, and public services
available to the community. Several studies can be cited. For example, consider
the paper by Boscacci et al. (2014) which analyzes the relationship between ur-
ban attractiveness and the smart city concept (measured in various dimensions)
across Italian provinces through a K-means clustering algorithm Arthur and Vas-
silvitskii (2006) in order to find differences and commonalities among provincial
capitals. Or consider the paper by Mounce et al. (2020) on the role of govern-
ments in institutional, organizational, regulatory, and financial frameworks to
support rural transport services in Europe. Once again, the authors propose
using a K-means clustering strategy to identify distinct classes of institutional
frameworks to support rural mobility. Alternatively, Balducci and Ferrara (2018)
use a combination of PCA, hierarchical cluster analysis, and spatial autocorrela-
tion to study the adoption of smart environmental policies in Italian provincial
capitals. Finally, as an alternative to K-means, other methods such as latent class
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cluster analysis (Alonso-González et al., 2020) have been implemented to quan-
tify an individual’s propensity to use smart mobility solutions.

The goal here is to define internally homogeneous groups of NILs that ex-
hibit similar smart mobility values while being distinguished and heterogeneous
from each other. Cluster analysis is the most suitable tool to achieve this pur-
pose. The cluster is performed by using as input the results of the sensitivity
analysis described in the previous step. Indeed, the optimal aggregative indi-
cator identified through the sensitivity analysis presented in Section 5.2 is used
to group the city’s neighborhoods according to the estimated smart mobility de-
gree. For consistency with the literature presented above, we implemented a
cluster analysis using the K-means algorithm with a number of groups varying
from two to six and trying multiple random starting points. The optimal number
of groups was selected by computing several clustering performance measures,
such as the GAP statistic (Tibshirani et al., 2001), the silhouettes criterion and
the majority rule-of-thumb for several indicators as proposed by Caliński and
Harabasz (1974) and Krzanowski and Lai (1988).

6. Results

6.1. Composite indicators and influence analysis

Figure 4 represents the estimated value of each index for all 88 NILs in the
city of Milan. The maps reveal two important findings about the overall degree

Figure 4: Estimated results of Mean 0-1 index (top left panel), Geometric
mean (top right panel), AMPI Index (bottom left panel), and Jevons Index
(bottom right panel) for Milan NILs. Values are reported in color scales of

increasing intensity, i.e., larger ones are associated with more intense colors.
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of mobility within the city of Milan. First, there is a strong similarity in the color
intensities obtained from the geometric mean, Mean 0–1, and AMPI indices. The
estimated values for the JJI, on the other hand, differ from the others. This is
confirmed by the linear correlation analysis performed on the estimated values
and reported in Table 4. In particular, a weak and non-significant correlation
is present between JJI and the other indices. On the other hand, the correlation
among the Mean 0–1, geometric mean, and AMPI indices is significant and close
to 1. This suggests that the sensitivity analysis and cluster analyses performed
with the first three indicators will be very similar and may deviate significantly
from those obtained by considering the JJI. Second, all four maps are character-
ized by intense colors (high values) in the city center (i.e., in the limited traffic
zone referred to as Area C) and in the districts where the primary mobility hubs
are located (e.g., central station). This result first suggests a strong concentration
and polarization of smart mobility in Milan toward the center, and infrastruc-
tural deficiency in the suburbs.

Index Jevons Mean 0-1 Geom. mean AMPI

JJI 1.00 0.53 0.58 0.46
Mean 0-1 0.53 1.00 0.99 0.99
IMG 0.58 0.99 1.00 0.98
AMPI 0.46 0.99 0.98 1.00

Table 4: Pearson correlation of the composite indicators

The results of the sensitivity analysis for the considered indices are reported
in Table 5.

Indices µX̄ σX̄ VCX̄ µSX σSX VCSX

JJI 2.298 0.907 0.395 2.317 0.536 0.231
Mean 0-1 1.309 1.140 0.871 1.973 1.398 0.709
IMG 1.468 1.249 0.851 2.091 1.474 0.705
AMPI 1.335 1.106 0.828 2.095 1.501 0.716

Table 5: Sensitivity analysis results

Comparing the variability coefficients and the standard deviations, the JJI
performs very well, as it presents the lowest values both for the mean and the
standard deviation. However, the global average shift (µX̄) and the average vari-
ability (µSX ) are the largest among those estimated. This lack of robustness of the
JJI may derive directly from its construction method, which only considers index
numbers and ignores the sample variability. The AMPI and the Mean 0–1 indices
perform well in terms of the average shift (i.e., they show low average shift) while
presenting slightly higher variability values. Overall, their performance seems to
be equivalent. The IMG index exhibits estimates of the variability that are almost
comparable with those of AMPI and Mean 0–1, but it also has a higher and more
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volatile average shift. To sum up, based on the correlation coefficients reported
in Table 4, AMPI, Mean 0–1, and the geometric mean are equivalent (correlation
close to 1) and have similar distributions on the map. However, the results shown
in Table 5, show that (1) the JJI outperforms the others in terms of variability but
not average shift, (2) AMPI and Mean 0–1 perform slightly worse than JJI, and
(3) the IMG’s performance is not satisfactory. Moreover, as previously stated in
the literature on composite indicators, the AMPI index, compared with other
non-compensatory indicators, satisfies some valuable statistical properties that
make it a cornerstone of official statistics (i.e., space-time comparison, simplicity
of calculation, easy interpretation of the results, robustness of the method, non-
substitutability of the individual indicators). Thus, considering (1) the nearly
perfect correlation between AMPI, IMG, and Mean 0–1; (2) the statistical prop-
erties of AMPI; and (3) the good performance of the JJI, our suggestion is to use
both the JJI and AMPI indices as inputs of the K-means clustering algorithm. In
particular, to take advantage of their potential in revealing the true patterns of
neighborhoods, we suggest using them both individually and jointly and then
comparing the resulting clusters.

6.2. Spatial cross-correlation with infrastructural features

In Appendix A.3 we report the Pearson’s linear correlation, the SCI and the
SPCC for all the pairs of composite indicators and structural variables. Reported
values are sorted by increasing values of Pearson’s index and show some inter-
esting evidence:

1. In general, linear correlations are weak (range -0.24 to +0.31), but strongly
depend on considered variables (economic infrastructures appear to be
more relevant compared to schools and health facilities);

2. All the indicators are inversely correlated with area and population den-
sity. This means that larger and more densely populated neighborhoods
have low levels of smart mobility, giving them the least coverage and mak-
ing them the most deficient. Such neighborhoods are mainly suburban
with some rural areas (see Figure 3). In contrast, central (more compact)
NILs have better access to transportation services;

3. The presence of hospitals, schools, and universities seems to be unrelated
to the degree of mobility. As shown in Figure 2, hospitals and schools are
fairly widely distributed across the city. Thus, these infrastructures are
present in both low- and high-smart-mobility neighborhoods;

4. The JJI shows an average positive correlation, but one that is much higher
than the others, with the number of hotels and available rooms. As we will
see in more detail in the cluster analysis, JJI sharply emphasizes commut-
ing, tourism, and entertainment NILs, which are inevitably characterized
by the presence of a high number of accommodations and restaurants (see
Figure 2);
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5. For both positively and negatively correlated pairs, the sign and magnitude
are determined by direct spatial correlation (Rp). This indicates that the
relationship between mobility and infrastructure is unrelated to distance
between NILs and geographical factors (i.e., there are no spatial clusters).
Thus, the correlation could be motivated by exogenous economic-social de-
terminants;

Without attempting to include a causal link between the variables, we can nonethe-
less argue that Milan’s current transportation system is oriented toward favoring
the more compact central areas over the suburbs, and that neighborhoods with a
higher degree of tourism benefit greatly from a good degree of smart mobility.

6.3. Clustering of the neighborhoods

Whether JJI, AMPI, or both are considered to create the clusters for the NILs,
the criteria for selecting the optimal number of groups are consistent. Indeed,
the majority rule of thumb suggests considering three or four groups, while both
the silhouette and the GAP statistic suggest exactly four clusters. Therefore, we
proceed to cluster the NILs by setting the number of potential clusters to four.
Empirical results on the optimal number of groups are reported in Appendix
A.1.

To avoid inconsistencies in the cluster results due to outlier values, we dropped
from the analyses seven NILs3 with a lower number of residents (i.e., ≤ 50 in-
habitants) or containing large green areas (e.g., urban parks). Therefore, these
districts will constitute a separate cluster that is not comparable with the others
and that is labeled as an outlier group.

We performed and compared three K-means algorithms specifications: the
first uses only the JJI index as a clustering variable (JJI clustering), the second
uses only the AMPI (AMPI clustering), and the third combines both indices
(JJI–AMPI clustering). The cluster analysis results are presented in the four maps
of Figure 5.

The four clusters can be listed in ascending order of mobility level:

• Low mobility: suburbs and peripheral areas, characterized by deficient
levels of mobility. Particularly, they are located in the southern and western
parts of Milan or along the eastern border neighborhoods of the city;

• Medium-low mobility: composed of all the NILs with a large residential
population but with few mobility services available. These are areas where
people commute and live, which host a large number of offices and pro-
duction activities;

• Medium-high mobility: include scientific university centers and former
industrial areas; largely populated and wealthy neighborhoods;

3Giardini Porta Venezia, Parco Sempione, Parco dei Navigli, Parco Agricolo Sud, Parco Bosco in
Città, Cantalupa and Quintosole
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• High mobility: NILs where citizens commute to reach offices (JJI) or spe-
cific NILs characterized by a strong presence of a single mobility services
(AMPI).

The JJI clustering effectively separates peripheral areas and suburbs from
the historical city center, transit sites, and nightlife areas. The high-mobility
group includes the main commuting points (Central and Garibaldi stations), the
nightlife areas (Navigli in the southwest and Porta Romana in the southeast),
as well as the Politechnical University area in the east. The medium–low cluster
mainly coincides with the city center (e.g., the Dome) and some further inhabited
areas (Viale Monza and Sarpi). The suburbs form a unique cluster surrounding
the center of the city.

The AMPI-based clustering separates areas that are not well-discriminated
by the JJI, such as the Linate airport area (southeast) or the new and highly cov-
eted neighborhood of City Life (northwest). The algorithm groups them within
the high-mobility cluster. Moreover, the AMPI identifies the city center more
clearly than does JJI. In this case, the city center (medium–high mobility) coin-
cides with Area C, which is the limited traffic zone adopted to improve the city’s
overall sustainability, extended to the commuting points and nightlife neigh-
bors. The cluster associated with medium–low mobility includes all the univer-
sity campuses and several inhabited areas. As in the JJI-based case, the AMPI
separates the suburbs (with low mobility) and extends the middle-mobility NILs
(i.e., the medium–low group becomes a larger area).

The JJI–AMPI cluster provides an excellent overview of the overall mobility
as it inherits the useful properties of both single-index approaches. However,
the result appears to be strongly dependent on AMPI’s behavior, as it holds the
high values of AMPI and JJI’s low values. The algorithm clearly separates the
city center from the suburbs, covering the entire peripheral areas of Milan, as in
the JJI-based case. The city center is classified as medium–low, as in the JJI out-
put. The medium–low cluster also includes some northern NILs, such as Bovisa
and Bicocca, which are highly inhabited areas hosting several university cam-
pus and train stations. The JJI–AMPI algorithm separates into two clusters those
NILs that were individually classified as high-mobility areas. In the combined
scenario, the AMPI high-mobility clusters remain in the high-mobility group,
while JJI’s high-mobility NILs are now classified as medium–high mobility areas.
Moreover, the medium–high group includes some other highly mobile neighbor-
hoods and commuting points, whereas the high-mobility cluster includes NILs,
such as QT8 and Tre Torri, which are essential transit sites. The latter two NILs,
together with Portello, were part of the Old Fair area of Milan.

The clustering results are consistent with those presented by Bernini et al.
(2019), who use land-use variables (e.g., buildings, roads, green urban areas, etc.)
in a network framework for community detection to identify groups of NILs with
similar land-use mixes. The urban patterns they identify are summarized in four
homogeneous groups or communities of neighborhoods. Considering the clus-
tering based only on JJI, we notice that high-mobility clusters include NILs in
the Community 1 area, while medium–high and medium–low mobility clusters
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Figure 5: Results of the k-means algorithm with k=4 classes. Clusters
obtained considering only Jevons Index (top panel), clusters obtained
considering only AMPI Index (middle panel), and clusters obtained

considering both AMPI and Jevons (bottom panel). The colors identify
different clusters.
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are spread among Community 1 and Community 3 areas. This fact is very signif-
icant since these NILs are characterized by a greater presence of buildings and
industrial and commercial areas where it is reasonable to expect more mobil-
ity services. On the other hand, the low-mobility cluster fits in Communities 2
and 4, which are essentially characterized by green urban areas and agricultural
areas. Such a marked overlap between the two results, however, is not observ-
able when considering the AMPI-based clusters. For example, the high-mobility
NILs are not concentrated in a single land-use cluster. Indeed, three of the top
NILs for the AMPI index (i.e., Farini, Ortomercato, and Tre torri) are included in
Community 3, Porta Garibaldi is in Community 1, QT8 is in Community 2, and
Triulzo Superiore (Linate) is in Community 4. Medium–high NILs are split in the
Community 1 and Community 3 clusters. Also, medium–low mobility and low-
mobility NILs are located in Communities 2 and 4. In general, there is a lower
level of association between the AMPI cluster and the land-use cluster compared
to the results observed for the JJI cluster. However, the AMPI index is capable of
isolating some emerging NILs characterized by a specific mobility composition.
Ultimately, considering the JJI–AMPI clustering, the majority of the NILs in the
high, medium–high, and medium–low mobility levels fit in Community 1, while
others are included in Community 3. The only exceptions are QT8 and Triulzio
Superiore, which showed high levels of mobility but are classified as Community
2 and Community 4, respectively, by Bernini et al. (2019).

Overall, both the spatial cross-correlation analysis and the K-means results
are consistent. From a policy perspective, they both suggest that the current
transportation system clearly favors the city center, composed of small neighbor-
hoods with high tourist and commuting appeal, over residential neighborhoods
located in more suburban areas.

7. Conclusions

In this paper we investigated the state of smart mobility in Milan in north-
ern Italy at the district level using a data-driven statistical approach. We were
interested in understanding whether the estimated smart mobility levels for the
neighborhoods are related to social and economic phenomena, such as tourism or
the presence of commuters from surrounding provinces, or whether it is guided
by other urban development patterns.

Four composite indicators — the AMPI, JJI, geometric mean, and average
of the rescaled values within the range 0–1 — were used and the results were
compared. After estimating the mobility degree for each district, we performed a
sensitivity analysis to the check the robustness of the variation in the elementary
indices. The sensitivity analysis suggested that we use the AMPI and the JJI, as
they were better-performing indices.

Furthermore, we studied the spatial cross-correlation between each compos-
ite indicator and a set of infrastructural features concerning health facilities,
education, tourism, and size. The correlations suggest that touristic neighbor-
hoods and the city’s center enjoy a greater level of smart mobility compared to
the peripheral areas and residential districts. Then, starting from the sensitiv-
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ity analysis results, we used the AMPI and JII to group the NILs according to
their mobility degree using a K-means cluster algorithm that can identify homo-
geneous groups in terms of smart mobility.

The empirical results showed that, whether using each indicator individu-
ally or in combination, the cluster analyses provide meaningful results in group-
ing the neighborhoods. In particular, the AMPI and JJI were able to properly
distinguish the main critical areas of the city, such as interchange hubs, univer-
sity zones, the city’s center, workplaces, and peripheral areas. Consistent with
the suggestions provided by the spatial cross-correlation, the clustering results
highlight substantial differences in terms of mobility within the Old Town (cor-
responding to the city’s center), which is characterized by very high mobility
levels, and the suburbs, showing very poor coverage of mobility services.

The results obtained are consistent with what is known about the evolution-
ary history of Milan over the last two centuries. Indeed, it is well known that
the city has experienced long periods of demographic and urban growth with-
out a real regulatory plan to govern its development (Rossari, 2020). Moreover,
the great industrial poles that had once settled in the city’s territory and that
occupied large areas bordering the railway stations (e.g., City Life and Bicocca)
gradually moved away. These factors forced the city administration to deal with
the need to intervene with projects and programs, not only for the recovery of the
territory, but also to rebalance socio-economic development, particularly in the
most peripheral and disadvantaged areas. In the new Territorial Government
Plan (Comune di Milano, 2019a), the goal is to reduce socio-economic imbal-
ances, extend the development of each district, improve environmental condi-
tions, and, in general, enhance citizens’ quality of life by 2030.

Data and codes

All the results presented in this paper can be reproduced using R software.
Codes are available at the following GitHub web page: https://github.com/

PaoloMaranzano/NC_MS_PM_PMC_MilanoMobility.git.
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A. Appendices

A.1. Appendix 1: clustering metrics

Figure 6: Clustering maps
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A.2. Appendix 2: cluster results

IdNIL NIL JJI AMPI JJI + AMPI
1 DUOMO Medium-low Medium-high Medium-low
2 BRERA Medium-high Medium-high Medium-low
3 GIARDINI PORTA VENEZIA Outlier Outlier Outlier
4 GUASTALLA Medium-low Medium-high Medium-low
5 VIGENTINA Medium-low Medium-high Medium-low
6 TICINESE Medium-low Medium-low Low
7 MAGENTA - S. VITTORE Medium-high Medium-high Medium-low
8 PARCO SEMPIONE Outlier Outlier Outlier
9 GARIBALDI REPUBBLICA High High High
10 CENTRALE High Medium-high Medium-high
11 ISOLA High Medium-high Medium-high
12 MACIACHINI - MAGGIOLINA Medium-high Medium-low Medium-low
13 GRECO Low Low Low
14 NIGUARDA - CA’ GRANDA Medium-low Low Low
15 BICOCCA Medium-high Medium-low Medium-low
16 VIALE MONZA Medium-low Medium-low Low
17 ADRIANO Low Low Low
18 PARCO LAMBRO - CIMIANO Low Medium-low Low
19 PADOVA Low Low Low
20 LORETO Low Low Low
21 BUENOS AIRES - VENEZIA Medium-high Medium-low Medium-low
22 CITTA’ STUDI High Medium-low Medium-high
23 LAMBRATE Low Low Low
24 PARCO FORLANINI - ORTICA Low Low Low
25 CORSICA Low Medium-low Low
26 XXII MARZO Medium-low Medium-low Low
27 PORTA ROMANA High Medium-high Medium-high
28 UMBRIA - MOLISE Low Medium-low Low
29 ORTOMERCATO Low High High
30 MECENATE Low Low Low
31 PARCO MONLUE’ - PONTE LAMBRO Low Low Low
32 TRIULZO SUPERIORE Low High High
33 ROGOREDO Low Low Low
34 CHIARAVALLE Low Low Low
35 LODI - CORVETTO Medium-low Medium-low Low
36 SCALO ROMANA Medium-low Medium-low Low
37 EX OM - MORIVIONE Low Low Low
38 RIPAMONTI Low Low Low
39 QUINTOSOLE Outlier Outlier Outlier
40 RONCHETTO DELLE RANE Low Low Low
41 GRATOSOGLIO - TICINELLO Low Low Low
42 STADERA Low Low Low
43 TIBALDI Low Low Low
44 NAVIGLI High Medium-high Medium-high
45 S. CRISTOFORO Low Low Low
46 BARONA Low Medium-low Low
47 CANTALUPA Outlier Outlier Outlier
48 RONCHETTO SUL NAVIGLIO Low Low Low
49 GIAMBELLINO Low Low Low
50 TORTONA Medium-low Medium-low Low
51 WASHINGTON Medium-low Medium-low Low
52 BANDE NERE Low Medium-low Low
53 LORENTEGGIO Low Medium-low Low
54 MUGGIANO Low Low Low
55 BAGGIO Low Low Low
56 FORZE ARMATE Low Low Low
57 SELINUNTE Low Low Low
58 DE ANGELI - MONTE ROSA Medium-low Medium-high Medium-low
59 TRE TORRI Medium-high High High
60 S. SIRO Low Medium-low Low
61 QUARTO CAGNINO Low Low Low
62 QUINTO ROMANO Low Low Low
63 FIGINO Low Low Low
64 TRENNO Low Low Low
65 GALLARATESE Low Low Low
66 QT 8 Medium-low High High
67 PORTELLO High Medium-high Medium-high
68 PAGANO Medium-high Medium-low Medium-low
69 SARPI Medium-low Low Low
70 GHISOLFA Medium-high Medium-low Medium-low
71 VILLAPIZZONE Medium-low Low Low
72 MAGGIORE - MUSOCCO Low Low Low
73 CASCINA TRIULZA - EXPO Low Low Low
74 SACCO Low Low Low
75 STEPHENSON Outlier Outlier Outlier
76 QUARTO OGGIARO Low Low Low
77 BOVISA Medium-high Medium-high Medium-low
78 FARINI Medium-high High High
79 DERGANO Medium-high Medium-low Medium-low
80 AFFORI Low Low Low
81 BOVISASCA Low Low Low
82 COMASINA Low Low Low
83 BRUZZANO Low Low Low
84 PARCO NORD Low Low Low
85 PARCO DELLE ABBAZIE Low Low Low
86 PARCO DEI NAVIGLI Outlier Outlier Outlier
87 PARCO AGRICOLO SUD Outlier Outlier Outlier
88 PARCO BOSCO IN CITTA’ Low Low Low

Table 6: Cluster results using Jevons and AMPI indices
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A.3. Appendix 3: spatial cross-correlation results

Index Variable Rc Rp R0
IMG Area -0.04 -0.20 -0.24
Mean01 Area -0.04 -0.20 -0.23
AMPI Area -0.04 -0.20 -0.23
JJI Area -0.05 -0.17 -0.21
AMPI Pop_density 0.06 -0.21 -0.15
Mean01 Pop_density 0.07 -0.17 -0.10
IMG Pop_density 0.07 -0.13 -0.06
AMPI N_Hospitals 0.03 -0.09 -0.06
AMPI N_Schools_students 0.05 -0.10 -0.05
AMPI N_Hospital_beds 0.02 -0.06 -0.04
Mean01 N_Hospitals 0.03 -0.07 -0.03
Mean01 N_Schools_students 0.06 -0.08 -0.02
Mean01 N_Hospital_beds 0.02 -0.04 -0.02
AMPI N_Schools 0.06 -0.06 -0.01
IMG N_Hospitals 0.04 -0.04 -0.01
IMG N_Hospital_beds 0.02 -0.02 0.00
IMG N_Schools_students 0.06 -0.04 0.01
Mean01 N_Schools 0.06 -0.03 0.03
JJI N_Schools_students 0.06 -0.01 0.04
AMPI N_Uni_headquarters 0.01 0.03 0.05
JI N_Hospital_beds 0.02 0.03 0.05
AMPI N_Hotels 0.05 0.00 0.06
Mean01 N_Uni_headquarters 0.01 0.04 0.06
JJI N_Uni_headquarters 0.02 0.04 0.06
AMPI N_Uni_campus 0.01 0.05 0.06
IMG N_Schools 0.06 0.01 0.07
AMPI N_Hotels_rooms 0.05 0.02 0.07
AMPI N_Hotels_beds 0.05 0.02 0.07
IMG N_Uni_headquarters 0.02 0.06 0.08
Mean01 N_Uni_campus 0.02 0.07 0.08
JJI N_Hospitals 0.03 0.06 0.08
Mean01 N_Hotels 0.05 0.03 0.09
Mean01 N_Hotels_rooms 0.05 0.05 0.10
Mean01 N_Hotels_beds 0.05 0.05 0.10
IMG N_Uni_campus 0.02 0.09 0.11
JJI N_Schools 0.07 0.04 0.11
IMG N_Hotels 0.06 0.07 0.12
JJI N_Uni_campus 0.02 0.10 0.12
JJI Pop_density 0.07 0.06 0.13
IMG N_Hotels_rooms 0.05 0.08 0.14
IMG N_Hotels_beds 0.05 0.08 0.14
JJI N_Hotels 0.06 0.24 0.31
JJI N_Hotels_beds 0.06 0.25 0.31
JJI N_Hotels_rooms 0.06 0.26 0.32

Table 7: Spatial cross-correlation results.
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