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Abstract In this manuscript, we compare classical univariate regression approaches with
copula models explicitly accounting for the dependency structure as well as with modern
machine learning techniques in the context of modelling and predicting of football results
in the major European leagues. Particularly, we want to present an extensive data set
compiled from publicly available sources containing data and match results from the first
men’s football divisions from England, France, Germany, Italy, Spain (often referred to as
the “big five”), the Netherlands and Turkey. We introduce several modelling approaches
to predict upcoming matches and compare their predictive strengths. The gathered data
set is presented in detail and made publicly available to motivate further work and mod-
elling ideas.
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1. INTRODUCTION

Generally, international football tournaments such as FIFA World Cups or the
big confederation’s championships (e.g. UEFA European Championship, CON-
CACAF Gold Cup, CONMEBOL Copa América) as well as international and
national tournaments on the team-level are experiencing an ever increasing stand-
ing in terms of popularity and financial relevance. Also, modelling and predicting
the results of sport matches and especially football matches has become a quite
popular and present topic.

Even though no gold standard approach exists to model football results, a
vast selection of methods and model classes has been proposed over the years. On
the observed results of scored goals per team, Poisson regression approaches have
been commonly used (e.g. by Lee, 1997, or Maher, 1982). These have been ex-
tended over the years to include several team-specific covariates in combination
with regularisation techniques (e.g. by Groll and Abedieh, 2013 or Groll et al.,
2015). The basic Poisson approaches can be extended by including dependency
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between the numbers of goals scored by competing teams, which Dixon and Coles
(1997) investigated early. In particular, the bivariate Poisson approach was then
proposed in detail by Karlis and Ntzoufras (2003). A different approach to depen-
dency is the inclusion of copulas, which McHale and Scarf (2007) used to model
the number of shots-on-target. Nikoloulopoulos and Karlis (2010) promoted cop-
ulas for the application to count data in general. More recently, van der Wurp et al.
(2020) and van der Wurp and Groll (2021) extensively applied copulas within the
GJRM (Generalised Joint Regression Modelling) framework by Marra and Radice
(2019), and added football-specific regularisation into it.

A completely different approach is to dispense with the information of the
numbers of goals and to model the nominal/ordinal outcome (win first team, tie,
win second team) directly. The usage of ordinal or nominal regression approaches
is rather straightforward as well (and e.g. discussed in Hvattum, 2017). Leitner
et al. (2010) used national team abilities (depicted by Elo ratings) and bookmak-
ers’ odds to directly obtain winning probabilities in a binary (win / loss) setting.
This was extended by Tutz and Schauberger (2014) with penalisation approaches
for league football d ata and by Schauberger et al. (2017) to analyse on-field vari-
ables such as total running distance per team. A comparison of both score- and
result-based approaches has been performed by Egidi and Torelli (2021).

Besides regression approaches, random forests (originally introduced by Breiman,
2001) are a very flexible and frequently used technique in the context of predicting
sports results. Random forests were used e.g. by Groll et al. (2019) and Groll et al.
(2021) to model FIFA World Cup and European championship data, respectively,
and to predict the latest tournament. Also with the tree-based methods, principally
both score- and result-based models can be used, see, e.g., Schauberger and Groll
(2018).

Bayesian approaches (see, for example, Baio and Blangiardo, 2010) are also
promising, but are omitted in this work. It will examine the predictive perfor-
mance of the mentioned (and some other) approaches via suitable performance
measures and will also investigate potential betting results. The probabilities
gathered from several online bookmakers will be used as a natural benchmark.
While copula regression and the proposed football-specific penalty structures by
van der Wurp et al. (2020) and van der Wurp and Groll (2021) will receive special
attention, a lot of different modelling approaches and covariate settings will be
benchmarked against one another.

The underlying data set was gathered in July 2021 and contains all matches
from the respective first men’s divisions of England, France, Germany, Italy, Spain

2



(the “big five”), the Netherlands, and Turkey for ten seasons between 2010 and
2020. Our data set ends just before the start of the COVID-19 pandemic, as these
extraordinary circumstances are deemed to be a research topic completely on its
own (postponed or completely canceled games, games with less or no fans, etc.).
A growing-window approach will be used to assess the approaches’ predictive
potential, where the upcoming matchday is predicted using all prior matchdays
and seasons.

We present this data set in detail in Section 2 with information about avail-
able covariates. Section 3 contains brief descriptions of all used model classes,
covariate settings, underlying software packages, and provides an overview about
the performance indicators used in our application. The corresponding results are
presented and visualised in Section 4, before we conclude in Section 5.

2. DATA

The data set was freely available, gathered from different websites, and pub-
lished (van der Wurp, 2022). As the analysis of market values by transfermarkt.
com was started in 2010, we chose the season of 2010/2011 as a starting point and
ended in the season of 2019/2020 with the start of the COVID-19 pandemic (see
end of Section 2). The sample sizes and more information by country are given in
Table 1.

Table 1: Sample sizes per league. The season 2019/2020 was called off for the
Ligue 1 and the Eredivisie, while postponed and later completed in the other
leagues.

League matches league size teams competed goalshome goalsaway
Premier League 3800 20 36 1.55 1.19
Ligue 1 3700 (3800) 20 34 1.46 1.07
Bundesliga 3060 18 28 1.65 1.30
Serie A 3800 20 34 1.52 1.19
Primera División 3800 20 33 1.59 1.13
Eredivisie 2988 (3060) 18 26 1.80 1.34
Süper Lig 3060 18 34 1.54 1.20

The main information of each match (teams competing, date, day of week,
matchday number, and the scored goals is easily available data and was gathered
from kicker.de in July 2021). Other covariates are:
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• Elo rating of each team. Calculated and gathered from http://clubelo.
com/ (July 2021; Schiefler, 2015). It ranges from 1223 (FC Dordrecht in
2014) to 2106 (Barcelona in 2012) and can be interpreted via the differences
in rating, denoted by
d = Elohome−Eloaway. The probability for the home team to win is then de-
fined as
π = P(HomeWin) = 1/

(
(10(

−d
400) +1

)
with ties being counted as a half

win (Schiefler, 2015). Equal Elo ratings will lead to a probability of 0.5.

After each match, the team’s Elo scores are adjusted by ∆Elo = (R−π) ·20
with R corresponding to the results from each team’s point of view (1 for a
win, 0.5 for a tie and 0 for a loss). The factor of 20 is a weight index chosen
by Schiefler (2015). With this scheme, unlikely results like an underdog’s
win will result in bigger Elo changes.

These (or similar) types of Elo rankings are commonly used in competitive
sports. It was originally proposed by Arpad Emmerich Elo (1961) to rank
the ability of chess players.

• Market Value (MV) of a team. Determined and gathered from transfermarkt.
com (July 2021). Given in million euro and ranges from 2.8 (FC Dordrecht
in 2014) to 1,300 (Manchester City in 2019/20). The market values of
transfermarkt.com are a community project, where each player’s mar-
ket value is discussed and determined by (known or rumoured) transfer fees
and the player’s standing in his team. The team’s value is the simple sum
of its current players. The values are updated twice a month to timely in-
clude transferred players. The earliest available data is from 2010-11-01, so
missing values occur for the first matchdays of the season 2010/11. As the
market values are growing over time, we are transforming the raw values to
shares of the league’s market value, using each matchday’s sum as a total
market value. Missing values are imputed as averages. With this approach,
the dominance of single teams can be modelled over the years without a
bias by inflation.

• Bookmaker Odds averaged from multiple bookmaker companies. Col-
lected from oddsportal.com (July 2021) and averaged over six different
bookmakers in 2010 up to 12 bookmakers in 2019. The odds can be trans-
formed to probabilities by inverting them to p j =

1
odds j

, j ∈ {1,X ,2}. As
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these do not sum up to 1 (due to bookmakers’ margins2), we adjust these
by p̃ j =

p j
p1+pX+p2

with p1 and p2 corresponding to wins of the first or sec-
ond named team and pX to a tie. With this, we implicitly assume an evenly
distributed margin across these outcomes. An alternative, more complex
normalisation approach, which is optimal against insider trading, was pro-
posed by Shin (1991).

• Promoted status of a team. Indicates for each team, whether it has been
promoted to the division immediately before the current season. This is
used to include the “rookie status”.

• Titleholder from last season. Indicates for each team whether it is the
league’s current titleholder.

• CupTitleholder from last season. Indicates for each team whether it is
the titleholder of the national cup (DFB-Pokal in Germany, FA CUP in
England, Copa del Rey in Spain, Coppa Italia, Coupe de France, KNVB
Cup in the Netherlands, Turkish Cup).

• FormGoals3 is the number of goals scored by the corresponding team i
in its last three matches. Easily calculated for matchdays 4 and later. For
earlier matchdays the last seasons average of all teams ḡ is used.

– matchday 1: FormGoals3 = ḡ

– matchday 2: FormGoals3 = 1
3 gteam i, matchday1 +

2
3 ḡ

– matchday 3: FormGoals3 = 1
3 gteam i, matchday1 +

1
3 gteam i, matchday2 +

1
3 ḡ

In rare cases, when a result is missing in the last 3 matches, the average
of the remaining 2 matches is used. Instead of 3, the last 5 (or 7, 10, . . . )
matches could be used. We settled on 3 to capture the most recent form of
the teams, which in football can often change quite spontaneously.

Note that, of course, principally many more potential covariates could be col-
lected and added to the data, such as e.g. the teams’ average ages or the coaches’
job tenure, or even so-called hybrid variables that are derived themselves by sta-
tistical model as done in Groll et al. (2019) and Groll et al. (2021). However, we

2The bookmakers’ margins can be seen as the fee the bookmakers take for offering their bets.
As a simplified example, fair betting odds for a (fair) coin toss would be 2. The offered odds need
to be lower than that, maybe 1.9, so the bookmaker is running profits in the long run. For more
details, see also the Betting Results paragraph in Section 3.4
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abstain to do so here, as we want to present rather standard approaches that can
be applied more or less directly by interested practitioners. For this purpose, we
have restricted the set of potential covariates to a selection which we deem to be
both highly informative and quite directly available.

MISSING DATA AND ABNORMALITIES

As noted above, no market values were available before 2010-11-01. This af-
fects 676 matches in total from all included leagues. The website transfermarkt.
com also does not provide data for teams that were dissolved or left professional
and semi-professional divisions. This results in missing market values in the fol-
lowing cases:

• Athlétic Club Arlésien in the Ligue 1 was dissolved in 2016 and has
missing market values in its only season of 2010/11.

• Thonon Évian F.C. in the Ligue 1 was relegated multiple times and left
professional and semi-professional football, currently switching between
France’s 5th and 6th division. This leads to missing values in the four sea-
sons of 2011/12, 2012/13, 2013/14, and 2014/15.

• ACN Siena 1904 in the Serie A was dissolved in 2014 and has missing
market values in the seasons of 2011/12 and 2012/13. Although the team
was re-established multiple times, it was never able to reach the higher di-
visions.

• AC Cesena in the Serie A was dissolved in 2018 and has missing market
values in the seasons of 2010/11, 2011/12, and 2014/15.

• Kayseri Erciyesspor in the Süper Lig was dissolved in 2018 and has
missing market values in the seasons of 2013/14 and 2014/15.

• Orduspor in the Süper Lig was dissolved in 2019 and has missing mar-
ket values in the seasons of 2011/12 and 2012/13.

• Mersin ?dman Yurdu in the Süper Lig was dissolved in 2019 and has
missing market values in the seasons of 2011/12, 2012/13, 2014/15, and
2015/16.

• Bucaspor in the Süper Lig was dissolved in 2020 and has missing mar-
ket values in its only season of 2010/11.
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• Gaziantepspor in the Süper Lig was dissolved in 2020 and has missing
market values in the seven seasons between 2010/11 and 2016/17.

In total, 2236 market values are missing, of which 1352 correspond to matches
before 2010-11-01 and 884 to the teams mentioned above (after 2010-11-01).

For the bookmakers’ odds a total of 346 entries is missing, belonging to 118
matches. In total 1706 matches include missing data, of which 676 are from
the start of the season 2010/11. The other 1030 matches are spread throughout
the leagues and seasons. Apart from these missing values of single covariates,
due to the COVID-19 pandemic full matchdays were missing or performed under
different circumstances.

THE PANDEMIC

As noted before, we will omit games played during the COVID-19 pandemic.
The dates on which each league was influenced is given in Table 2. As the
leagues were handling the situation differently, e.g. in Ligue 1 the season was
postponed and later cancelled while the Süper Lig had matches behind closed sta-
dium doors and later postponed the season, we exclude all matches later than the
given dates, which were those of the earliest decisions regarding each league. As
single matches (e.g., matches in the Eredivisie in February) have been postponed
due to different reasons and should have taken place later, those matches before
that cut-off point are missing. The corresponding final sample sizes per league are
found in Table 2 as well.

Table 2: Start dates of matches under the COVID-19 pandemic influence.
Date corresponds to the first decision, not the final one.

League decision date included matches with missings
Premier League postponed 2020-03-13 3696 128
Ligue 1 cancelled 2020-03-13 3687 325
Bundesliga postponed 2020-03-16 2966 116
Serie A postponed 2020-03-09 3668 296
Primera División postponed 2020-03-12 3674 119
Eredivisie cancelled 2020-03-12 2973 118
Süper Lig postponed 2020-03-12 2963 597

Given the ever changing situation and decisions, we exclude all matches
starting from 2020-03-01. As the remaining missing data points are rather few
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compared to the full data set, we will not use any methods for data imputation and
instead omit matches whenever a variable is used that is missing.

3. MODELS AND EVALUATION MEASURES

For all models the general notation includes the number of goals scored per
team (y1,y2) and a covariate or design matrix X, respectively, containing for each
match a set of k different covariates as a single row xi = (1,x1, . . . ,xk)

⊤. The first
column with entries of 1 corresponds to an intercept, which is included depending
on the model.

3.1. MODELLING THE NUMBER OF GOALS

All fitting procedures and evaluations were performed within R (R Core Team,
2020).

Most models will be used with two different model equation sets. First, each
team’s goals are modelled with the team’s covariates, indicated by H and A for
home and away teams, respectively, in the following pseudo model formulae:

yH ∼ eloH +MVH + p̃1 +FormGoals3H +PromotedH +TitleH +CupTitleH ,

yA ∼ eloA +MVA + p̃2 +FormGoals3A +PromotedA +TitleA +CupTitleA .
(1)

And for a second, more complex type of approaches, each team’s goals are mod-
elled by the covariates of both teams, including information about the opponents
strength.

yH ∼ eloH + eloA +MVH +MVA + p̃1 + p̃2 +FormGoals3H +FormGoals3A+

PromotedH +PromotedA +TitleH +TitleA +CupTitleH +CupTitleA

yA ∼ eloA + eloH +MVA +MVH + p̃2 + p̃1 +FormGoals3A +FormGoals3H+

PromotedA +PromotedH +TitleA +TitleH +CupTitleA +CupTitleH
(2)

POISSON REGRESSION

Poisson regression is typically performed via a generalised linear model (GLM)
with an exponential link function and often used to model count data. The two
margins are typically treated independently (conditional on the covariate informa-
tion), so no dependency apart from the covariate level is included. For a general
overview of these models, see, e.g., Groll and Schauberger (2019).
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REGULARISED POISSON REGRESSION

To achieve some form of sparsity, penalisation techniques such as the LASSO
(Tibshirani, 1996) can be used. In this setting, the fitting procedure is able to
shrink coefficients or to set them completely to zero. As is typical for LASSO,
the penalty strength (commonly denoted as λ ) is determined via a cross validation
approach, which is e.g. implemented in the cv.glmnet function from the glmnet
R package (Friedman et al., 2010). The LASSO penalisation was used in the
context of football, e.g. by Groll and Abedieh (2013) and Groll et al. (2015).

COPULA REGRESSION

Copula regression applies dependency between (in this case) Poisson marginal
regressions. The GJRM framework and R implementation by Marra and Radice
(2019) is used, which was proposed to the application of football in van der Wurp
et al. (2020). Detailed insights into the methodology can be found there and in the
references therein. As the authors found the F (Frank) and FGM (Farlie-Gumbel-
Morgenstern) copulae to be good choices for the application of FIFA World Cups,
we concentrate on these dependency structures.

REGULARISED COPULA REGRESSION

Moreover, van der Wurp et al. (2020) proposed a penalty to ensure equal coeffi-
cient estimates for the same covariates of both competing teams. Corresponding
covariates in this case are e.g. eloH and eloA in Equations (1) or (2). The way a
team’s elo rating is influencing the goals scored by the team should be the same
regardless of whether the team is first- or second-named, i.e. home or away team.
It is important to note that for the models from Equation (2), eloH in the first
margin and eloA in the second margin are not coinciding, but yielding the same
interpretation in different margins. To clarify, they are not the same covariate, but
are treated as identical in the penalisation scheme. The covariates’ order in Equa-
tion (2) highlights this. However, it can be argued that their coefficients should
coincide.

A second LASSO-type penalty proposed by van der Wurp and Groll (2021)
introduces sparsity to the framework. We will use the two penalties both individ-
ually and combined to find the best approach. A fixed grid length of 100 is used
for optimising the LASSO-penalty strength. Note that varying the construction of
the grid (density or location) would yield slightly different results.
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RANDOM FORESTS

Multiple implementations of random forests exist in R. Groll et al. (2019) found
the cforest from the party package by Hothorn et al. (2006) to be the best
for the application of FIFA World Cups. Also, in the UEFA European Champi-
onship 2020 the cforest again yielded very promising results (Groll et al., 2021).
We will follow these findings and use this implementation as a representative for
random forests. For the general methodology about random forests see Breiman
(2001), and Breiman et al. (1984) for the idea of classification and regression trees
(CARTs) behind random forests.

EXTREME GRADIENT BOOSTING

Instead of parallel ensemble methods like the random forest approach from above,
one can also consider sequential ensembles such as boosting, a technique which
stems from the machine learning community (Freund and Schapire, 1996) and was
later adapted to estimate predictors for statistical models (Friedman, 2001; Fried-
man et al., 2000). Friedman (2001) introduced the idea of gradient tree boosting,
with decision trees as learners. These are repeatedly fitted on the residuals of the
previous fitting step and, hence, combined to a sequential ensemble. This tech-
nique was then further improved by Chen and Guestrin (2016) via introducing
additional regularisation in the objective function. The regularisation terms make
the single trees weak learners to avoid overfitting. In a certain boosting iteration,
the next tree is additively incorporated into the ensemble after multiplication with
a rather small learning rate, which makes the learners even weaker. The method is
called extreme gradient boosting (XGBoost), and is known in the machine learn-
ing community for its high predictive power3 The R package xgboost by Chen
et al. (2021) contains the implementation of the algorithm.

For a brief summary of the methodology and an exemplary application to
football, see e.g. Groll et al. (2021). Finally, note that an important aspect is
that XGBoost involves several tuning parameters, such as e.g. the learning rate,
the optimal number of boosting steps and several penalty parameters. For this
purpose, we specified simple, discrete parameter grids and used multivariate 10-
fold cross validation to determine optimal values for three key tuning parameters
(namely the learning rate eta, the convergence criterion for splits gamma, and
the max number of boosting iterations nrounds) on the training data (prior to

3It lately has been very successful in several prestigious machine learning prediction competi-
tions, such as those launched by Kaggle (https://www.kaggle.com).
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2014/2015). This is performed for each league individually and on the full training
data set. The tuned parameters are kept constant after this.

3.2. MODELLING THE ORDINAL/NOMINAL OUTCOME

Beside modelling the number of goals per match (y1,y2) one can also model
the three-way outcomes directly, which could be seen as a natural alternative as we
are using multiple quality-of-prediction measures on this dimension and betting
on these outcomes is rather popular. Hence, we will also model the match results
winHome (with y1 > y2), draw (with y1 = y2) and winGuest (with y1 < y2) and
from now on will use the common short notation of bookmakers, i.e. 1/X/2,
for these three outcomes. As a draw is clearly positioned between the other two
outcomes, ordinal approaches are deemed more suitable than nominal ones, as
they can exploit this information. We use the polr function of the MASS package
by Venables and Ripley (2002), which fits a cumulative proportional-odds logit
model.

REMARKS

Model approaches from Equations (1) and (2) are used in comparison when-
ever possible. This includes (regularised) Poisson regression, all copula mod-
els, random forests and the XGBoost. The ordinal approach is modelling the
one-dimensional outcome 1/X/2, where all covariates from (one of the two parts
from) Equation (2) are used.

For all models predicting independently both scores, the Skellam distribu-
tion as a difference between two Poisson distributed variables is used to calculate
probabilities for the three-way outcomes. This affects Poisson regression, random
forests and XGBoost.

3.3. PREDICTION APPROACH

To simulate a realistic prediction situation, we use all prior matches of a given
league to predict the following matchday. For this, we declared the first 5 seasons
from (2010 up to 2015) as “burn-in” training data. So, starting from the season
of 2015/2016, this training data is used to predict the next matchday. Afterwards,
the predicted matchday is added to the training data, continuing throughout all
remaining matchdays and seasons.

For the global model, which does not differentiate between the leagues, we
use the date instead of the matchday, as the latter is not consecutive anymore.
Although this leads to smaller steps (dates vs. matchdays) and slightly changing
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sizes of the test data in our prediction approach, we deem the differences to the
league-specific approach to be negligible

The quality or goodness of the obtained predictions is observed on multiple
levels and calculated with measures from the following Section 3.4.

3.4. GOODNESS OF PREDICTION MEASURES

This section will introduce measures of prediction quality. With these, we
cover all interesting response levels, i.e. goals, three-way outcomes, and betting
results. It should be noted that not all measures are applicable to all models. The
ordinal model for example does not provide estimated goals, so no error measures
on this level can be obtained.

RPS

The ranked probability score (RPS) observes the three-way outcomes. It takes the
ordinal structure of win, draw and loss into account and is defined in this context
as

RPSi =
1
2

2

∑
r=1

(
r

∑
l=1

π̂il −δil

)2

for each match i (see, e.g. Schauberger and Groll, 2018, for another application,
and Gneiting and Raftery, 2007, for the original proposition). Here, π̂il are the
estimated probabilities for the respective three-way outcomes l and δil is the Kro-
necker’s delta, containing the observed outcome. In general, the RPS is an error
term on the probability-level and is to be minimised. Alternatively, the (multi-
category extension of the) Brier score (Brier, 1950) could be used on the three-
way outcomes. But as it does not account for the ordinal structure, we use the
RPS instead.

MULTINOMIAL LIKELIHOOD

The multinomial likelihood (LH), which also operates on the probability-level, is
defined as

LHi = π̂
δi1
i1 π̂

δi2
i2 π̂

δi3
i3 ,

which is essentially the predicted probability for the observed outcome (van der
Wurp et al., 2020), and therefore is to be maximised.
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CLASSIFICATION RATE

The classification rate (CR) is maybe the simplest measure. Out of the three-way
outcome, we classify the outcome with the highest predicted probability as the
estimated outcome. For a single game i, this can be written via

CRi = 1

(
δi = argmax

l∈{1,2,3}
(π̂il)

)
.

The global classification rate is then averaged over all matches and is to be max-
imised.

ERRORS IN GOALS

On the response-level of the goals scored, one can easily calculate the difference
between the number of estimated and observed goals per team. For each match,
we calculate the squared and absolute errors via

SEi = (ŷ1 − y1)
2 +(ŷ2 − y2)

2 ,

AEi = |ŷ1 − y1|+ |ŷ2 − y2|.

BETTING RESULTS

Last, as maybe the most popular benchmark measure, we will investigate each
model’s performance in regard to betting. For this, we use the bookmakers’ odds
from oddsportal.com. It is important to note that these odds are averaged over a
selection of bookmakers, so the results are not necessarily the same using a single
or even a selection of bookmakers.

To create a betting strategy, we calculate the expected return of a given bet
via

E[returni] = π̂il ·oddsil −1. (3)

As soon as the expected return is positive, once should take that bet (a threshold
value of 0 marks a fair bet). Larger thresholds than zero may be chosen.

If multiple bets for a single match yield a positive expected return, we will
simply take the one with the highest expected return, limiting us to a single bet per
match. Other approaches, such as a variance-minimising strategy, taking the bet
with (a positive expected return and) the highest probability of success are also
possible.
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We are using a stake of 1 fiscal unit for each bet, indicated by the −1 in the
expected return (3). Other strategies are possible as well, e.g. the Kelly criterion
(Kelly, 1956), which gives weights and therefore different stake sizes to each bet.
The outcome in terms of gains is then calculated via

gainsi =

{
−1, if bet failed
oddsil −1, if bet was successfull

and summed up over all matches of a given league. Making a profit (i.e. beating
the bookmakers) is a very optimistic and challenging objective. Hence, achieving
betting losses close to zero with rather simple models is already considered an
achievement, especially considering bookmakers’ costs and (presumably) taxes.
When transforming bookmakers odds to
probabilities (see Section 2), the probabil-
ities do not sum up to 1 because of mar-
gins. As bookmakers are offering smaller
odds than a fair bet would be, the transforma-
tion yields higher probabilities. These sums
average to 1.05. The downward outlier (see
Figure 1) may be the result of the averag-
ing process from oddsportal.com and is
not further investigated. The distribution in-
dicates the 5% winning margin (median) the
bookmakers are collecting.

0.
95

1.
00

1.
05

1.
10

Figure 1: Values of inverted
and summed up odds. For fair
bets, this would always sum up
to exactly 1. The difference
can be interpreted as book-
maker margin.

4. RESULTS

For all models and leagues, the resulting measures are averaged throughout
all predicted matches. Exemplarily, the results for the simple independent Poisson
model from Equation (1) are shown in Table 3. The quality of prediction differs
between the national leagues. This is especially visible in the betting results,
ranging from a profit of 38.41 stakes (fictional money unit) in the Premier League
to a loss of 189.51 stakes in the Süper Lig. Relative to the “invested” stakes this
corresponds to a winning rate (i.e. bet.gains/bets) of 2.35% and a loss of 20.18%,
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respectively. The ratio of matches that are bet on (i.e. bets/n) also varies strongly
and ranges from 92.36% for the Premier League to 70.50% for the Süper Lig.
This should be taken with a grain of salt, as the leagues receive widely different
attention in the national and international media and betting markets.

Table 3: Results for the simple independent Poisson model from Equation (1).

RPS LH CR SE AE n bets bet.gains
Premier League 0.191 0.434 0.552 2.601 1.804 1768 1633 38.41
Bundesliga 0.203 0.418 0.520 2.972 1.921 1414 1189 -117.80
Primera División 0.191 0.435 0.537 2.583 1.770 1746 1353 -113.76
Ligue 1 0.199 0.411 0.514 2.523 1.746 1784 1358 -76.70
Serie A 0.185 0.442 0.577 2.534 1.755 1744 1539 -89.17
Eredivisie 0.189 0.446 0.583 2.961 1.912 1442 1061 -83.06
Süper Lig 0.200 0.405 0.527 2.653 1.808 1332 939 -189.51

First, to be able to compare our big selection of models, we average the mea-
sures throughout all leagues. We are using a weighted average by sample sizes
for the measures of RPS, LH, CR, SE, and AE and a simple sum for the number
of matches n, the number of bets and the bet gains. The results for all models can
be found in Table 4. Goodness-of-prediction results, exemplarily in terms or RPS
and betting returns, for each league can be found in the appendix, Tables 9 and
10.

The RPS is, ever so slightly, improving with the copula models becoming
more complex. Both the equal and the LASSO penalty are improving the results.
Regarding the average multinomial likelihood the BIC models with lasso penali-
sation are performing worse than their AIC counterparts. We found no noteworthy
differences between models using both marginal covariates in both marginal re-
gressions and their simpler counterparts (see Equation (2) in Section 3.1 compared
to Equation (1)). The classification rate CR has little to no variation in any direc-
tion. Sadly, no model was able to end with a net gain in betting from thousands
of matches and bets. But some models are getting close to break-even. The sim-
ple copula models with all available covariates are achieving losses of less then
2.5% of stakes from more than 8600 bets. As discussed and shown above in Sec-
tion 3.4, the calculated margin of bookmakers can be assumed to be about 5%,
as they have expenses to cover. A selection of our models is solidly beating that
threshold and might create frowning reactions with bookmaker companies. The
equalisation penalty from van der Wurp et al. (2020) is impairing the models with
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Table 4: Results for all modelling approaches. Calculated separated by
leagues, but then aggregated. Cell colors best (green) to worst (red) for vi-
sualisation. See digital version.

Model Eq Cop. regul. RPS LH CR SE AE bets gainratio
pois 1 - - 0.1938 0.428 0.545 2.674 1.811 9072 -0.0696
pois 2 - - 0.1941 0.428 0.542 2.683 1.812 9506 -0.0430
pois 1 - LASSO 0.1938 0.425 0.544 2.672 1.808 8915 -0.0693
pois 2 - LASSO 0.1939 0.425 0.543 2.676 1.809 9352 -0.0524
RF 1 - - 0.1975 0.427 0.536 2.753 1.840 10365 -0.0718
RF 2 - - 0.1961 0.427 0.539 2.721 1.827 10188 -0.0617
XGboost 1 - - 0.1967 0.412 0.543 2.732 1.818 10188 -0.0765
XGboost 2 - - 0.1970 0.412 0.542 2.733 1.819 10312 -0.0609
Cop 1 F - 0.1937 0.429 0.544 2.676 1.812 7874 -0.0549
Cop 1 FGM - 0.1937 0.429 0.544 2.676 1.812 7936 -0.0573
Cop 2 F - 0.1940 0.429 0.542 2.683 1.812 8696 -0.0250
Cop 2 FGM - 0.1940 0.429 0.542 2.683 1.812 8753 -0.0243
Cop 1 F equal 0.1937 0.429 0.543 2.674 1.808 7200 -0.0898
Cop 1 FGM equal 0.1938 0.429 0.543 2.674 1.808 7276 -0.0897
Cop 2 F equal 0.1938 0.429 0.542 2.675 1.810 8109 -0.0517
Cop 2 FGM equal 0.1938 0.429 0.542 2.674 1.810 8164 -0.0497
Cop AIC 1 F LASSO 0.1937 0.428 0.544 2.676 1.810 7578 -0.0670
Cop BIC 1 F LASSO 0.1939 0.425 0.544 2.681 1.809 8016 -0.0800
Cop AIC 1 FGM LASSO 0.1937 0.428 0.543 2.676 1.810 7669 -0.0733
Cop BIC 1 FGM LASSO 0.1940 0.425 0.544 2.682 1.810 8035 -0.0921
Cop AIC 2 F LASSO 0.1939 0.428 0.543 2.684 1.811 8150 -0.0363
Cop BIC 2 F LASSO 0.1944 0.423 0.544 2.694 1.814 8315 -0.0715
Cop AIC 2 FGM LASSO 0.1939 0.428 0.542 2.684 1.812 8259 -0.0408
Cop BIC 2 FGM LASSO 0.1943 0.423 0.544 2.693 1.813 8456 -0.0717
Cop AIC 1 F both 0.1937 0.429 0.543 2.679 1.808 6028 -0.0858
Cop BIC 1 F both 0.1936 0.429 0.543 2.679 1.808 5729 -0.0807
Cop AIC 1 FGM both 0.1935 0.429 0.543 2.670 1.806 5864 -0.0901
Cop BIC 1 FGM both 0.1935 0.429 0.543 2.669 1.806 5560 -0.0960
Cop AIC 2 F both 0.1938 0.428 0.543 2.673 1.808 6505 -0.1004
Cop BIC 2 F both 0.1938 0.428 0.543 2.675 1.808 5816 -0.0963
Cop AIC 2 FGM both 0.1936 0.429 0.543 2.670 1.807 6257 -0.0899
Cop BIC 2 FGM both 0.1935 0.428 0.543 2.673 1.807 5729 -0.1037
ordinal - - - 0.1944 0.430 0.542 - - 9419 -0.0433
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and without LASSO penalisation. The gain in interpretability (see van der Wurp
and Groll, 2021 and the aforementioned reference from 2020) comes at a cost of
prediction quality.

It should be noted that the mentioned measures are operating on the three-
way-outcome dimension, while most model fitting procedures are using the like-
lihood on the number of goals. So errors on goals (SE and AE) might be a
fairer measurement with regard to the models’ original purpose apart from foot-
ball modelling. With the exception of BIC models being constantly worse than
their AIC counterparts, more sophisticated models in terms of penalisation are
achieving better prediction performances. The combined models with equalisa-
tion and LASSO penalties are yielding the best results, albeit quite close to the
LASSO-penalised Poisson model.

To summarise, it is not possible to declare a clear winning model. Depending
on the context and the user’s aims and scope, we deem multiple models to be
suitable. For pure interpretability very simplistic models such as the ordinal or
the simple Poisson model might be favoured. The equalisation approach allows
for a better insight into coefficients, as they are cleaned of home- and away-team-
specific differences in covariate effects. The best model – if the objective is to
beat bookmakers – is, in this case, neither the most complex nor the simplest
approach. In the following, we will present selected models in detail to highlight
certain advantages and disadvantages.

The results by league are rather interesting, see Tables 9 and 10 in the ap-
pendix. Regarding the RPS our predictions for the French Ligue 1 and the Turkish
Süper Lig are considerably worse than for the other leagues. The fictional betting
returns show a similar pattern for the Süper Lig - matches in this league seem to be
harder to predict than those of other leagues. Especially for the English Premier
League and the German Bundesliga the models seem to perform quite well. As
the investigated leagues receive quite different amounts of international attention,
some difference in data quality can be assumed particularly for bookmaker odds
and market values, the latter variable originating from a community project.

SELECTED MODELS IN DETAIL

We begin with examining the clear winner model regarding the betting out-
come, which is the copula model with all available covariates and no penalisation
whatsoever. As the differences between FGM and F copula are negligible we
will show examples from both. Some resulting coefficients, exemplarily for the
Premier League, can be found in Table 5.
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Table 5: Estimated coefficients for the copula FGM model with all covariates
and no penalisation, exemplarily for the Premier League

βββ
(1) SE(βββ (1)) βββ

(2) SE(βββ (2))
(Intercept) -0.9255 0.6616 -0.1517 0.7508
elo Team -0.0001 0.0004 -0.0006 0.0004
elo Opponent 0.0004 0.0003 0.0007 0.0004
MV Team 0.3625 0.9023 1.2796 1.0520
MV Opponent 1.6485 1.0235 -2.0060 1.1524
p Team 1.6295 0.3602 1.4432 0.3845
p Opponent -0.3531 0.3756 -0.4858 0.4138
FormGoals3 Team -0.0205 0.0204 -0.0007 0.0230
FormGoals3 Opponent -0.0081 0.0217 -0.0227 0.0249
Promoted Team 0.0443 0.0464 -0.1448 0.0549
Promoted Opponent 0.0516 0.0397 -0.0139 0.0453
Title Team -0.0853 0.0598 -0.0347 0.0668
Title Opponent -0.0477 0.0780 0.1858 0.0865
Title Cup Team -0.0303 0.0602 -0.0657 0.0686
Title Cup Opponent 0.0185 0.0792 -0.0470 0.0969

These coefficients (and especially the differences between the two margins)
are rather hard to interpret. While each respective team’s market value has a
positive influence on the team itself, the opponent’s market value is behaving quite
differently. For home teams, the market value of their opponents has a positive
impact and for away teams, the respective market value of their opponents has a
negative influence. Due to high levels of multicollinearity, think for example of
elo, market value and bookmaker probabilities p, the exact values cannot be taken
at face value. But rather big differences between the first and second margin are
still hard to justify.

Models with higher value regarding interpretability may be desired, even if
they offer a slightly worse performance in specific measures or even overall. The
results for the separate leagues (see Table 8 in the appendix) are varying strongly
between the leagues and each league’s margins. This could be for two reasons: A)
The covariates’ influence is immensely different in each league and the leagues
should therefore be fitted independently. We will discuss this in Section 4.1 in
more detail. Or B) a lot of noise and artefacts are included in the models. There-
fore, some form of sparsity should be incorporated. We will take a closer look at
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other well-performing models from Table 4, i.e. applying the LASSO-type penalty
and a second model using both the LASSO and the presented equalisation penalty.

SPARSER MODELS

The (LASSO-) penalised Model via BIC with an F copula from Table 4 has
a slightly worse performance regarding betting and no noteworthy changes in the
other measures. The resulting coefficients can be found in Table 6.

Table 6: Estimated coefficients for the LASSO-penalised copula F model
(left) and with both penalties combined (right) with all covariates, exemplar-
ily for the Premier League. For both models the optimal tuning parameters
were selected via BIC.

βββ
(1)

βββ
(2)

βββ
(1)

βββ
(2)

(Intercept) -0.6960 -0.2231 -0.3593 -0.3637
elo Team 0.0005 0.0002
elo Opponent 0.0001 -0.0002
MV Team 0.0488 0.3249
MV Opponent 0.6337 -0.7649
p Team 0.8067 1.2049 1.6492 1.6498
p Opponent -0.7372 -0.1131
FormGoals3 Team 0.0019
FormGoals3 Opponent -0.0084
Promoted Team 0.0190 -0.0535
Promoted Opponent 0.0153
Title Team -0.0702
Title Opponent 0.0389
Title Cup Team
Title Cup Opponent -0.0081

With eight coefficients shrunk to zero, the model is slightly sparser and easier
to interpret, while maintaining virtually the same quality of prediction. Some
oddness remains: Playing against the current titleholder has a positive impact on
the away team, but no influence at all on the home team. The opponent’s market
value even changes its sign completely if a team is playing at home or away. This
can be rationalised with strong interdependencies and collinearities or with missed
features such as psychological factors and others.

To (partly) tackle this issue, we will take a look at the model with the com-
bined penalties (BIC tuning and F copula again) in Table 4. The results can also
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be found in Table 6. With only five coefficients estimated different from zero (in-
cluding the copula parameter, which, interestingly, was estimated to be virtually
zero), the resulting model is extremely sparse and easy to interpret. Here, βββ

(1)

and βββ
(2) are virtually equal, allowing straightforward interpretations. The pre-

dicted probabilities by bookmakers p – which can be interpreted as a substitute
variable for team strength – are estimated yielding a positive influence on each
respective team. Note here that the intercept was only penalised by the equalisa-
tion penalty and not by the LASSO-type approach, as is common for the LASSO
framework.

4.1. DIFFERENCES BETWEEN LEAGUES

In this section, we investigate whether the leagues are different regarding
their assumed underlying model. Instead of comparing or testing the models’
coefficients, we compare the quality of prediction in the ever updating models
when differentiating between the national leagues and when treating them as one
global training data set. Instead of predicting the next matchday (as done before),
we are using the dates of matches. This results in 1793 unique dates of which
the first 913 are solely used as training data and the other 880 are predicted using
all matches before the given date. The results in comparison to Table 4 from
before are shown in Table 11. Unsurprisingly, the results are not wildly different.
Instead, the results seem to be more homogeneous than before. Especially, the
betting results are clearly more consistent between models.

The estimated coefficients for a selected copula regression model can be
found in Table 7. As interpretability is limited with wildly different marginal co-
efficients, the equalisation penalty is applied again and the resulting coefficients
are compared. The resulting model contains four covariates for each margin. The
bookmakers’ p was consistently chosen in both settings. Interestingly, the esti-
mated copula parameter θ was again estimated to be virtually zero in terms of
Kendall’s τ (0.0297 and < 0.0001 in absolute value, respectively for the models
from Tabel 7), indicating no correlation structure whatsoever.

5. CONCLUSIONS

In this work, we presented an extensive data set of football matches in Euro-
pean leagues and the application of different modelling approaches to it. Compar-
ing methodologies, we found regularised copula regression approaches to yield
good results. The very flexible machine learning techniques of Random Forests
and XGBoost are very sensible to tuning - their rather mediocre results in this
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Table 7: Estimated coefficients for the LASSO-penalised copula F model
(left) and with both penalties combined (right) with all covariates for all
leagues combined in comparison to Table 6. For both models the optimal
tuning parameters were selected via BIC.

βββ
(1)

βββ
(2)

βββ
(1)

βββ
(2)

(Intercept) -0.5769 -0.1050 -0.1143 -0.1104
elo Team -0.0005 -0.0003 -0.0002 -0.0002
elo Opponent 0.0003 0.0000
MV Team 0.7206 0.4752 0.7013 0.6972
MV Opponent -0.3280
p Team 2.2575 1.9893 1.7061 1.7082
p Opponent 0.6245 0.1176
FormGoals3 Team 0.0204 0.0094
FormGoals3 Opponent 0.0339 0.0060 0.0178 0.0169
Promoted Team -0.0130 -0.0579
Promoted Opponent -0.0221 -0.0168
Title Team -0.0385
Title Opponent -0.0437 -0.1077
Title Cup Team 0.0558 -0.0123
Title Cup Opponent 0.0285 -0.0165

application can almost certainly be improved via extensive tuning. The (copula-
)regression approaches yield models that are both easy to interpret and to use.
However, the gain compared to simple approaches such as standard independent
Poisson modelling is rather small.

We found a set of covariates that are more important than others. Unsurpris-
ingly, especially the bookmakers’ probabilities (converted from odds) are deemed
to be full of information and can be a solid predictor on their own. Differences
between the investigated seven European leagues were found considering relevant
covariates. The common ground was found to be the previously mentioned book-
makers’ odds. The influence of other coefficients varies greatly in different coun-
tries in both strength and sign. As these can be interpreted as correction factors
onto the immense importance of bookmakers’ odds, the variation can be caused
by the leagues themselves or different prediction strategies by the bookmakers.

Principally, one reason for all regarded modelling approaches yielding rather
similar results could be that they all base on the highly informative bookmakers’
odds, as described above. Hence, the specific type of modelling (linear vs. non-
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linear, interactions, dependence structure, etc.) here seems to play a minor role.
We believe that extending the regarded set of covariates by additional features
which cover new types of information, such as e.g. the “hybrid” features regarded
in Groll et al. (2021, 2019) for the modelling of national team tournaments could
on the one hand side increase the overall predictive performance of the models,
on the other hand manifest more distinctive results across model classes. Unfor-
tunately, the calculation of these features is rather extensive and went beyond the
scope of this work. Besides, as mentioned above, the machine learning approaches
are subject to complex tuning. Hence, they typically need a large training data set
to utilize their full potential.

The data indicates that bookmakers are calculating with a betting margin of
about 5%. While some models were able to beat this margin, we can not claim
to have beaten the bookmakers, as other models ran significant losses. There are
obvious limitations due to the available data. Our data set was completely com-
piled from publicly available sources and from a fixed point in time. Bookmakers
are able to shift existing odds depending on betting behaviour of customers or de-
pending on external events, such as a core player getting injured before a match.
A public-data driven approach such as this cannot be that flexible.

While this work is focussed around national leagues, all models can princi-
pally be applied to different tournaments as well, such as FIFA World Cups, UEFA
European Championships, or the UEFA Champions League and comparable tour-
naments on the club-level on other continents. However, some additional aspects
need to be considered. For one the existing sample sizes are considerably smaller,
causing issues for complex machine learning approaches. Also each tournament’s
specific structure (how groups are built in group stages, tournament schedule, po-
tential extra time and penalty shoot-outs etc.) needs to be taken into account. See,
for example, thoughts by Egidi and Torelli (2021), van der Wurp et al. (2020), and
van der Wurp and Groll (2021).

All in all, our aim was mainly to create an interesting data set and motivate
different statistical and machine learning modelling approaches to it, rather than
finding the actual/virtual/definite best prediction approach on the regarded data,
e.g. in terms of betting profits. The manuscript shall give an overview of their
general predictive potential in this field of application as well as other aspects
such as interpretability, which might also be relevant for the practitioner. The
underlying data set is publicly available in an R package EUfootball (van der
Wurp, 2022). The reader is both invited to create their own modelling ideas for
the underlying football data and to apply the here presented approaches to other
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fields and applications. Also, we hope that this work inspires other researches to
use and extend our data set, and to build upon and further improve the modelling
strategies presented here.

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the predic-
tion of football results. In Journal of Applied Statistics, 37 (2): 253–264.

Breiman, L. (2001). Random forests. In Machine Learning, 45: 5–32.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, J.C. (1984). Classification
and Regression Trees. Wadsworth, Monterey, CA.

Brier, G.W. (1950). Verification of forecasts expressed in terms of probability. In
Monthly Weather Review, 78: 1–3.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 785–794.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,
Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li,
Y. (2021). xgboost: Extreme Gradient Boosting. URL https://CRAN.R-
project.org/package=xgboost. R package version 1.3.2.1.

Dixon, M.J. and Coles, S.G. (1997). Modelling association football scores and
inefficiencies in the football betting market. In Journal of the Royal Statistical
Society: Series C (Applied Statistics), 46 (2): 265–280.

Egidi, L. and Torelli, N. (2021). Comparing goal-based and result-based ap-
proaches in modelling football outcomes. In Social Indicators Research,
156 (2): 801–813.

Elo, A.E. (1961). New uscf rating system. In Chess Life, 16: 160–161.

Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algo-
rithm. In Proceedings of the Thirteenth International Conference on Machine
Learning, 148–156. Morgan Kaufmann, San Francisco, CA.

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting ma-
chine. In Annals of Statistics, 29: 337–407.

23



Friedman, J.H., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression:
A statistical view of boosting. In Annals of Statistics, 28: 337–407.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for gener-
alized linear models via coordinate descent. In Journal of Statistical Software,
33 (1): 1.

Gneiting, T. and Raftery, A.E. (2007). Strictly proper scoring rules, prediction,
and estimation. In Journal of the American Statistical Association, 102 (477):
359–378.

Groll, A. and Abedieh, J. (2013). Spain retains its title and sets a new record
- generalized linear mixed models on European football championships. In
Journal of Quantitative Analysis in Sports, 9 (1): 51–66.

Groll, A., Hvattum, L.M., Ley, C., Popp, F., Schauberger, G., Van Eetvelde, H.,
and Zeileis, A. (2021). Hybrid machine learning forecasts for the uefa euro
2020. In arXiv preprint arXiv:2106.05799.

Groll, A., Ley, C., Schauberger, G., and Van Eetvelde, H. (2019). A hybrid ran-
dom forest to predict soccer matches in international tournaments. In Journal
of Quantitative Analysis in Sports, 15: 271–287.

Groll, A. and Schauberger, G. (2019). Prediction of soccer matches. In Wiley
StatsRef: Statistics Reference Online, 1–7.

Groll, A., Schauberger, G., and Tutz, G. (2015). Prediction of major international
soccer tournaments based on team-specific regularized Poisson regression: an
application to the FIFA World Cup 2014. In Journal of Quantitative Analysis
in Sports, 11 (2): 97–115.

Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., and van der Laan, M.J.
(2006). Survival ensembles. In Biostatistics, 7: 355–373.

Hvattum, L.M. (2017). Ordinal versus nominal regression models and the problem
of correctly predicting draws in soccer. In International Journal of Computer
Science in Sport, 16 (1): 50–64.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate
Poisson models. In The Statistician, 52: 381–393.

24



Kelly, J.L. (1956). A new interpretation of information rate. In Bell System Techni-
cal Journal, 35 (4): 917–926. doi:10.1002/j.1538-7305.1956.tb03809.x. URL
http://dx.doi.org/10.1002/j.1538-7305.1956.tb03809.x.

Lee, A.J. (1997). Modeling scores in the Premier League: is Manchester United
really the best? In Chance, 10: 15–19.

Leitner, C., Zeileis, A., and Hornik, K. (2010). Forecasting sports tournaments by
ratings of (prob)abilities: A comparison for the EURO 2008. In International
Journal of Forecasting, 26 (3): 471–481.

Maher, M.J. (1982). Modelling association football scores. In Statistica Neer-
landica, 36: 109–118.

Marra, G. and Radice, R. (2019). GJRM: generalised joint regression modelling.
R package version 0.2.

McHale, I. and Scarf, P. (2007). Modelling soccer matches using bivari-
ate discrete distributions with general dependence structure. In Statis-
tica Neerlandica, 61 (4): 432–445. doi:10.1111/j.1467-9574.2007.00368.x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
9574.2007.00368.x.

Nikoloulopoulos, A.K. and Karlis, D. (2010). Regression in a copula model for
bivariate count data. In Journal of Applied Statistics, 37: 1555–1568.

R Core Team (2020). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.
R-project.org/.

Schauberger, G. and Groll, A. (2018). Predicting matches in international football
tournaments with random forests. In Statistical Modelling, 18 (5–6): 1–23.

Schauberger, G., Groll, A., and Tutz, G. (2017). Analysis of the importance of
on-field covariates in the German Bundesliga. In Journal of Applied Statistics,
45 (9): 1561–1578.

Schiefler, L. (2015). Football Club Elo Ratings. http://clubelo.com/ [Ac-
cessed: July 2021].

Shin, H.S. (1991). Optimal betting odds against insider traders. In The Economic
Journal, 101 (408): 1179–1185.

25



Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. In Journal
of the Royal Statistical Society, B 58: 267–288.

Tutz, G. and Schauberger, G. (2014). Extended ordered paired comparison models
with application to football data from german bundesliga. In AStA Advances in
Statistical Analysis, 99 (2): 209–227. doi:10.1007/s10182-014-0237-1. URL
http://dx.doi.org/10.1007/s10182-014-0237-1.

van der Wurp, H. (2022). EUfootball: Football Match Data of European Leagues.
URL https://CRAN.R-project.org/package=EUfootball. R package
version 0.0.1.

van der Wurp, H. and Groll, A. (2021). Introducing lasso-type penalisation to gen-
eralised joint regression modelling for count data. In AStA Advances in Statis-
tical Analysis. URL https://doi.org/10.1007/s10182-021-00425-5.

van der Wurp, H., Groll, A., Kneib, T., Marra, G., and Radice, R. (2020). Gen-
eralised joint regression for count data: a penalty extension for competitive
settings. In Statistics and Computing, 30 (5): 1419–1432.

Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S.
Springer, New York, 4th edn.

26



APPENDIX

Table 8: Estimated coefficient for the copula FGM model with all covariates
and no penalisation for all leagues; left columns: home team; right columns:
away team

(Intercept) -0.99 0.25 -0.48 -0.49 -1.73 -1.24 -0.15 -0.18
elo Team 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
elo Opponent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00
MV Team 0.43 1.52 0.81 -0.18 -0.26 -0.39 0.63 1.10
MV Opponent 1.70 -1.73 -1.07 -0.38 -1.56 0.87 0.19 -0.46
p Team 1.55 1.49 1.87 2.27 1.98 2.12 2.67 1.65
p Opponent -0.38 -0.42 0.59 0.27 -0.24 -0.08 0.79 0.07
FormGoals3 Team -0.02 0.01 0.03 0.01 0.01 0.00 0.03 -0.01
FormGoals3 Opponent -0.01 -0.02 0.02 -0.03 0.04 0.02 0.04 -0.00
Promoted Team 0.04 -0.17 -0.06 -0.11 0.05 -0.01 -0.01 0.04
Promoted Opponent 0.06 -0.03 -0.06 -0.00 0.06 0.11 -0.04 -0.01
Title Team -0.07 -0.03 -0.06 0.01 -0.01 -0.12 0.05 -0.07
Title Opponent -0.05 0.17 -0.25 -0.16 -0.18 -0.53 -0.02 0.10
Title Cup Team -0.01 -0.06 0.10 0.03 0.12 -0.05 0.05 0.13
Title Cup Opponent 0.01 -0.07 0.18 -0.04 0.12 0.09 0.08 0.07

(Intercept) -1.57 -1.12 -1.37 1.31 -0.59 -0.99
elo Team -0.00 0.00 -0.00 -0.00 -0.00 -0.00
elo Opponent 0.00 -0.00 0.00 -0.00 0.00 0.00
MV Team -0.38 0.48 0.50 0.81 1.25 -0.33
MV Opponent -0.84 -0.19 -1.57 0.33 -1.17 0.35
p Team 2.99 2.60 2.28 0.22 2.45 3.37
p Opponent 1.43 0.89 0.97 -1.40 1.11 1.33
FormGoals3 Team 0.03 0.02 -0.01 -0.00 0.03 0.00
FormGoals3 Opponent 0.04 -0.04 0.05 0.03 -0.01 0.02
Promoted Team -0.01 -0.01 -0.03 -0.17 -0.01 -0.02
Promoted Opponent -0.00 -0.02 0.01 -0.04 -0.09 -0.06
Title Team 0.11 -0.05 -0.10 0.06 0.08 -0.01
Title Opponent 0.15 -0.12 -0.06 -0.27 0.07 -0.20
Title Cup Team 0.09 -0.12 0.07 -0.04 -0.02 -0.01
Title Cup Opponent -0.16 0.08 0.02 -0.14 0.05 -0.06
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Table 9: RPS (ranked probability score) results for all models and leagues.
Cell colors best (green) to worst (red) for visualisation. See digital version.

Model Eq Cop regul.
pois 1 - - 0.191 0.191 0.185 0.191 0.199 0.189 0.200
pois 2 - - 0.192 0.192 0.185 0.191 0.199 0.189 0.202
pois 1 - LASSO 0.192 0.192 0.186 0.191 0.199 0.189 0.201
pois 2 - LASSO 0.192 0.192 0.185 0.191 0.199 0.189 0.201
RF 1 - - 0.195 0.195 0.189 0.194 0.202 0.192 0.207
RF 2 - - 0.194 0.194 0.188 0.192 0.202 0.191 0.203
XGboost 1 - - 0.196 0.196 0.189 0.194 0.202 0.191 0.203
XGboost 2 - - 0.196 0.196 0.190 0.194 0.202 0.190 0.204
Cop 1 F - 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop 1 FGM - 0.191 0.191 0.185 0.191 0.199 0.189 0.201
Cop 2 F - 0.192 0.192 0.185 0.191 0.199 0.190 0.202
Cop 2 FGM - 0.192 0.192 0.185 0.191 0.199 0.190 0.202
Cop 1 F equal 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop 1 FGM equal 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop 2 F equal 0.192 0.192 0.184 0.191 0.199 0.189 0.201
Cop 2 FGM equal 0.192 0.192 0.184 0.191 0.199 0.189 0.201
Cop AIC 1 F LASSO 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop BIC 1 F LASSO 0.191 0.191 0.185 0.192 0.199 0.190 0.200
Cop AIC 1 FGM LASSO 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop BIC 1 FGM LASSO 0.192 0.192 0.185 0.192 0.199 0.190 0.200
Cop AIC 2 F LASSO 0.191 0.191 0.185 0.191 0.199 0.190 0.201
Cop BIC 2 F LASSO 0.192 0.192 0.187 0.192 0.199 0.190 0.201
Cop AIC 2 FGM LASSO 0.192 0.192 0.185 0.191 0.199 0.190 0.201
Cop BIC 2 FGM LASSO 0.192 0.192 0.187 0.192 0.199 0.190 0.201
Cop AIC 1 F both 0.191 0.191 0.185 0.192 0.199 0.189 0.200
Cop BIC 1 F both 0.191 0.191 0.185 0.192 0.199 0.189 0.200
Cop AIC 1 FGM both 0.191 0.191 0.185 0.191 0.199 0.189 0.200
Cop BIC 1 FGM both 0.191 0.191 0.185 0.191 0.198 0.189 0.200
Cop AIC 2 F both 0.191 0.191 0.185 0.192 0.199 0.190 0.200
Cop BIC 2 F both 0.192 0.192 0.185 0.192 0.199 0.190 0.200
Cop AIC 2 FGM both 0.191 0.191 0.185 0.191 0.199 0.190 0.200
Cop BIC 2 FGM both 0.191 0.191 0.185 0.191 0.199 0.189 0.200
ordinal - - 0.192 0.192 0.185 0.192 0.200 0.190 0.201
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Table 10: Fictional betting results (in gain ratio, gains per betted unit of
currency) for all models and leagues. Cell colors best (green) to worst (red)
for visualisation. See digital version.

Model Eq Cop regul.

pois 1 - - 0.024 0.024 -0.058 -0.084 -0.056 -0.078 -0.202
pois 2 - - 0.017 0.017 0.003 -0.032 -0.077 -0.052 -0.138
pois 1 - LASSO 0.017 0.017 -0.097 -0.088 -0.075 -0.135 -0.093
pois 2 - LASSO 0.015 0.015 -0.019 -0.067 -0.048 -0.105 -0.130
RF 1 - - -0.004 -0.004 -0.046 -0.087 -0.046 -0.111 -0.190
RF 2 - - -0.039 -0.039 -0.116 0.001 -0.069 -0.077 -0.097
XGboost 1 - - -0.023 -0.023 -0.136 -0.067 -0.062 -0.102 -0.125
XGboost 2 - - 0.001 0.001 -0.104 -0.067 -0.050 -0.092 -0.092
Cop 1 F - 0.068 0.068 -0.049 -0.073 -0.043 -0.078 -0.215
Cop 1 FGM - 0.054 0.054 -0.034 -0.070 -0.044 -0.081 -0.236
Cop 2 F - 0.035 0.035 -0.001 0.027 -0.037 -0.062 -0.134
Cop 2 FGM - 0.037 0.037 0.012 0.012 -0.040 -0.062 -0.127
Cop 1 F equal -0.016 -0.016 -0.083 -0.098 -0.086 -0.141 -0.212
Cop 1 FGM equal -0.025 -0.025 -0.082 -0.102 -0.077 -0.142 -0.198
Cop 2 F equal -0.003 -0.003 0.009 -0.071 -0.060 -0.072 -0.147
Cop 2 FGM equal -0.007 -0.007 0.023 -0.068 -0.064 -0.070 -0.150
Cop AIC 1 F LASSO 0.037 0.037 -0.080 -0.068 -0.066 -0.113 -0.168
Cop BIC 1 F LASSO -0.007 -0.007 -0.059 -0.140 -0.045 -0.119 -0.153
Cop AIC 1 FGM LASSO 0.017 0.017 -0.091 -0.088 -0.055 -0.111 -0.168
Cop BIC 1 FGM LASSO -0.006 -0.006 -0.099 -0.143 -0.097 -0.125 -0.141
Cop AIC 2 F LASSO 0.035 0.035 0.047 -0.014 -0.091 -0.065 -0.197
Cop BIC 2 F LASSO -0.021 -0.021 -0.121 -0.070 -0.039 -0.115 -0.112
Cop AIC 2 FGM LASSO 0.042 0.042 0.019 -0.025 -0.078 -0.061 -0.208
Cop BIC 2 FGM LASSO -0.024 -0.024 -0.136 -0.070 -0.047 -0.100 -0.123
Cop AIC 1 F both 0.022 0.022 -0.045 -0.086 -0.161 -0.167 -0.340
Cop BIC 1 F both 0.032 0.032 -0.045 -0.100 -0.125 -0.180 -0.337
Cop AIC 1 FGM both 0.024 0.024 -0.070 -0.119 -0.146 -0.156 -0.357
Cop BIC 1 FGM both 0.018 0.018 -0.070 -0.120 -0.191 -0.152 -0.357
Cop AIC 2 F both -0.022 -0.022 0.005 -0.154 -0.178 -0.155 -0.242
Cop BIC 2 F both 0.025 0.025 -0.013 -0.149 -0.122 -0.233 -0.293
Cop AIC 2 FGM both -0.003 -0.003 -0.031 -0.136 -0.135 -0.134 -0.310
Cop BIC 2 FGM both 0.011 0.011 -0.103 -0.125 -0.235 -0.135 -0.349
ordinal - - 0.024 0.024 0.006 -0.050 -0.083 -0.017 -0.152
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Table 11: Results for all modelling approaches. Calculated by combining
all leagues to one large data set. Cell colors best (green) to worst (red) for
visualisation. See digital version.

Model Eq Copula regul. RPS LH CR SE AE bets gainratio
pois 1 - - 0.1935 0.429 0.544 2.668 1.810 8316 -0.0734
pois 2 - - 0.1936 0.428 0.544 2.666 1.808 9017 -0.0468
pois 1 - LASSO 0.1935 0.428 0.544 2.667 1.809 8207 -0.0790
pois 2 - LASSO 0.1935 0.428 0.544 2.664 1.808 8833 -0.0415
RF 1 - - 0.1969 0.427 0.536 2.736 1.835 10318 -0.0612
RF 2 - - 0.1953 0.427 0.539 2.694 1.822 9982 -0.0503
XGboost 1 - - 0.1943 0.424 0.544 2.680 1.812 9691 -0.0690
XGboost 2 - - 0.1944 0.424 0.543 2.674 1.811 9855 -0.0729
Cop 1 F - 0.1933 0.430 0.545 2.668 1.810 6456 -0.0659
Cop 1 FGM - 0.1932 0.430 0.545 2.668 1.810 6509 -0.0663
Cop 2 F - 0.1934 0.429 0.544 2.666 1.808 7622 -0.0432
Cop 2 FGM - 0.1934 0.429 0.544 2.666 1.808 7675 -0.0456
Cop 1 F equal 0.1935 0.429 0.543 2.670 1.808 6004 -0.0639
Cop 1 FGM equal 0.1935 0.429 0.543 2.670 1.808 6087 -0.0635
Cop 2 F equal 0.1935 0.429 0.544 2.668 1.808 7551 -0.0565
Cop 2 FGM equal 0.1935 0.429 0.544 2.668 1.808 7605 -0.0513
Cop AIC 1 F LASSO 0.1933 0.430 0.545 2.668 1.810 6315 -0.0675
Cop BIC 1 F LASSO 0.1934 0.429 0.545 2.669 1.809 6286 -0.0677
Cop AIC 1 FGM LASSO 0.1933 0.430 0.545 2.668 1.810 6385 -0.0688
Cop BIC 1 FGM LASSO 0.1934 0.429 0.545 2.669 1.809 6374 -0.0683
Cop AIC 2 F LASSO 0.1935 0.429 0.544 2.667 1.808 7527 -0.0490
Cop BIC 2 F LASSO 0.1934 0.429 0.544 2.669 1.810 7461 -0.0510
Cop AIC 2 FGM LASSO 0.1935 0.429 0.544 2.665 1.807 7565 -0.0521
Cop BIC 2 FGM LASSO 0.1935 0.429 0.544 2.667 1.809 7551 -0.0623
Cop AIC 1 F both 0.1939 0.429 0.543 2.693 1.812 6255 -0.0687
Cop BIC 1 F both 0.1939 0.429 0.543 2.692 1.812 6050 -0.0651
Cop AIC 1 FGM both 0.1934 0.429 0.544 2.670 1.807 5773 -0.0660
Cop BIC 1 FGM both 0.1934 0.429 0.544 2.670 1.807 5565 -0.0617
Cop AIC 2 F both 0.1948 0.428 0.543 2.721 1.815 7103 -0.0859
Cop BIC 2 F both 0.1947 0.428 0.544 2.722 1.816 5775 -0.0774
Cop AIC 2 FGM both 0.1935 0.429 0.544 2.668 1.806 6786 -0.0930
Cop BIC 2 FGM both 0.1934 0.429 0.545 2.670 1.806 5321 -0.0626
ordinal - - - 0.1936 0.430 0.544 - - 7937 -0.0506
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