
85A comparative study on univariate outlier winsorization methods in data science context 

ISTAT (Istituto Nazionale di Statistica) (2020). The unobserved Economy in the 
National Accounts. Years 2015-2018 Report. 
https://www.istat.it/it/files//2020/10/Economia-non-osservata-nei-conti-
nazionali.pdf. Last access: 29/01/2024. 

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2020). An introduction to 
statistical learning with R. Piccin-Nuova Libraria. 

Kelmanson, B., Kirabaeva, K., Medina, L., Mircheva B., and Weiss J. (2019). 
Explaining the shadow economy in Europe: Size, causes and policy options. 
International Monetary Fund. 

Lewis, A. W. (1955). Theory of economic growth (1st ed.). Routledge, London.  
Lütkepohl, H. (1982). Non-causality due to omitted variables. Journal of 

Econometrics. 19(2-3): 367–378. 
Marinescu, C., and Valimareanu, I. (2019). The mai current (schools) of thoughts about 

the informal economy. Review of International Comparative Management. 
17(5): 310–316.  

Medina, L., and Schneider, F. (2017). Shadow economies around the world: What did 
we learn over the last 20 years?. International Monetary Fund.  

Morales, A. (1997). Epistemic reflections on the informal economy. International 
Journal of Sociology and Social Policy. 17(3/4): 1–17.   

Murphy, R. (2019). The European tax gap. A report for the Socialists and Democrats 
Group in the European Parliament. Global Policy.  

OECD et al. (2002). Measuring the Non-Observed Economy: A Handbook. OECD 
Publishing, Paris. 

Pace, R. K., and LeSage, J. P. (2010). Omitted variable biases of OLS and spatial lag 
models. In Progress in spatial analysis: Methods and applications. Springer, 
Berlin, Heidelberg.  

Schneider, F. (2011). Handbook on the Shadow Economy. Edward Elgar, Northampton 
USA. 

Schneider, F., Buehn, A., and Montenegro, C. E. (2010). New estimates for the shadow 
economies all over the world. International Economic Journal. 24(4): 443–461. 

Stock, J. H., and Watson, M. W. (2019). Introduction to econometrics (4th Edition). 
Pearson Education Limited. 

Wooldridge, J. M. (2003). Diagnostic testing. A companion to theoretical econometrics. 
Blackwell Publishing Ltd.  

World Bank Data and PwC (PricewaterhouseCoopers) (2020). Paying Taxes 2020. 
Report.https://archive.doingbusiness.org/content/dam/doingBusiness/pdf/db2020
/PayingTaxes2020.pdf. Last access: 29/01/2024. 

United Nations. (1993). System of national accounts. UN. 

A COMPARATIVE STUDY ON UNIVARIATE OUTLIER
WINSORIZATION METHODS IN DATA SCIENCE CONTEXT

Ali Abuzaid1

Department of Mathematics, Al Azhar University - Gaza, Gaza, Palestine.

Iyad Alkrunz
Department of Information Technology, Al Azhar University - Gaza, Gaza, Pales-
tine.

Abstract Handling outliers is an important step in data analysis, and it can be approached
through three different ways, namely; accommodation, omission, or winsorization. This
article investigates the impact of four winsorization statistics (mean, median, mode, and
quantiles) on parameter estimation through an extensive simulation study. Three prob-
ability distributions (normal, negative binomial, and exponential) are considered, each
with varying degrees of contamination. The simulation results suggest that winsoriza-
tion is effective for small contamination levels and large sample sizes. Furthermore, it
is recommended to winsorize outliers in symmetric distributions using any of the loca-
tion parameters. However, for asymmetric distributions, the median should be employed.
To illustrate these findings, a real dataset on internet usage session durations for 4,500
users, comprising over 2 million records, are fitted to the exponential distribution. The
identified outliers were winsorized using the aforementioned statistics.

Keywords: Capping; flooring; outlier; quantile-based.

1. Introduction

Outliers refer to data values that significantly deviate from the majority of the 
data. The presence of outliers can have a detrimental impact on the effectiveness 
and accuracy of a predictive model, as they have the potential to skew estimations. 
Outliers can arise due to various factors, such as incorrect measurements, data 
entry errors, or sampling from a different population (Frost, 2020). Consequently, 
the issue of outlier-detection has garnered considerable attention from statisticians 
and data scientists.

The methods of outlier-detection are broadly classified into different classes,
namely distribution-based methods, depth-based methods, and density-based meth-
ods (Preparata and Shamos, 1988, Dominguesa, et al 2018).
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The argument on the handling of outliers is continued between the belief of
Tukey (1960) that rejecting outliers indiscriminately is inappropriate, and other
various trimming and winsorization techniques. Thus, after detection, outliers
can be handled in one of three ways: accommodation, omission, or winsorization.

Accommodation is employed by robust statistical methods to mitigate the 
impact of outliers on parameter estimates (Ekezie and Ogu, 2013). Outliers 
have the potential to undermine the conclusions of a study (Hubert et al., 2008; 
Farcomeni and Ventura, 2010), and thus, accommodation techniques are 
utilized to indirectly counteract their influence. The trimming of outliers has 
been extensively stud-ied, and researchers such as Lix and Keselman (1998) 
and Yusof et al. (2013) have proved its benefits in terms of improving 
robustness. Additionally, the topic of trimming, including discussions on the 
type (symmetric or asymmetric) and percentage of trimming, has been 
addressed by Babu et al. (1999) and Wilcox (2003).

In winsorization, extreme values are substituted with suitable values to miti-
gate the impact of outliers on estimators and modeling power (Frey, 2018). These
substitute values can be any of the central tendency measures as outlined in Sec-
tion 2. However, determining the appropriate winsorization percentage cut-off
point and the winsorization statistic can pose challenges.

A poor choice of winsorization percentage will inflate the mean squared er-
rors (MSE) of desired estimators. Thus, it is recommended to choose the cut-off 
point that minimizes the MSE compared to the classical estimator. Winsorization 
is recommended to avoid the loss of power (Leys, et al, 2019). Moreover, Liao et 
al (2017) highlighted the effectiveness of winsorization in controlling Type I error 
inflation and outlier impact on power based on a simulation study.

In the context of data science, practitioners used different statistics for win-
sorization, such as mean, median and quantiles. To the best of our knowledge, no
published study has specifically examined the impact of different winsorization
statistics on estimators. This article investigates the impact of four winsoriza-
tion statistics viz mean, median, mode and quantile-based flooring and capping
technique on the estimates of parameters of three distributions, namely normal,
negative binomial and exponential distribution.

2. Outliers and Winsorization

2.1. Outliers Detection

Various methods exist for identifying outliers, such as square root transfor-
mation, median absolute deviation, Grubb’s test, and Ueda’s method, as recently

2

discussed by Shimizu (2022). However, in this article, we use Tukey’s method
boxplot (1977) due to its popularity and less sensitivity of outliers’ existence com-
pared to other tests.

Boxplot is a well-known simple graphical tool to display information about
continuous univariate data based on five summaries, namely, median, lower quar-
tile Q1, upper quartile Q3, lower extreme, and upper extreme of a data set. Any
value smaller than the lower fence LF = Q1 − ν ∗ IQR or larger than the upper
fence UF = Q3 +ν ∗ IQR is an outlier candidate, where ν is the resistance factor
and IQR = Q3 −Q1 is the interquartile range. Different values of ν can be con-
sidered, but the nominal value is ν = 1.5 (Hoaglin et al, 1986). Various versions
of the boxplot were also proposed (see Abuzaid et al; 2012, Saeger et al; 2016).

The following subsection discusses the treatment of outliers via winsoriza-
tion.

2.2. Winsorization of outliers

The winsorization method involves replacing outlier values with a suitable 
statistic such as mean, median, mode or quantile-based technique as follows:

1. Replacing outliers by mean : In this technique, outliers are replaced with
the arithmetic mean of the remaining observations after removing outliers.

2. Replacing outliers by median : The median value, which is the middle
value of an ordered remaining observations, is used to replace the detected out-
liers.

3. Replacing outliers by mode : Outliers are replaced with the mode value of
the remaining observations.

4. Quantile−based Flooring and Capping : in this quantile-based technique, 
the maximum outliers are replaced with the upper fence, UF (capped), and the 
minimum outliers are replaced with the lower fence, LF (floored).

The following section investigates the effect of the previous four considered
winsorization statistics on the performance of parameter estimates for different
probability distributions via a Monte Carlo simulation study.

3. Simulation

An R code has been developed to generate random datasets from three different 
probability distributions, namely, normal, negative binomial and exponential 
distribution.
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3.1. Settings of Data Generation

Data were generated with four different sample sizes, n = 20, 50, 100 and 200, in 
such a way that (1 − ε) of data are generated from the original distribution (P) and 
the rest ε of data are generated from the contamination distribution (C). Thus, the 
contaminated data structure can be formulated as Pε = (1−ε)P+εC, where ε is 
the contamination level and ε = 0.05, 0.10, 0.15 and 0.20. The following three 
probability distributions are considered:

3.1.1. Normal distribution

Let X be a random variable having the normal distribution, with mean −∞ < µ <

∞ and standard deviation σ > 0, X ∼ N(µ,σ 2). The datasets were generated
from the standard normal distribution with µ = 0 and σ = 1. For contamination
procedure, the contaminated data were generated from another normal distribution
with µ = 4 and σ = 2.

The maximum likelihood estimator (MLE) of the mean and standard devi-

ation are obtained as the sample mean µ̂ = x̄ = 1
n ∑n

i=1 xi, and σ̂ =
√

∑(xi−x̄)2

n−1 ,
respectively. Moreover, the least squares estimation method is equivalent to the
MLE, where both are sensitive to the presence of outliers.

3.1.2. Negative binomial distribution

Let X be a random variable having the negative binomial distribution, X ∼NB(k, p)
with mean, µ = k

p and variance σ 2 = k(1−p)
p2 , where X is the count of inde-

pendent Bernoulli trials are required to achieve the kth successful trials when
the probability of success is a constant p, and p ∈ [0,1]. The probability of
f (X = x) =

(x−1
k−1

)
pk(1− p)x−k, for x = k,k + 1,k + 2, ... and k = 0,1,2, ... The

MLE of p is given by p̂ = k
x+k .

For the negative binomial random variable, data are generated with parame-
ters k = 2 and p = 0.2, while the contaminated data are generated from a Poisson
distribution with λ = 32, where the probability of k successes is P(X = k) =
(eλ λ k)

k! .

3.1.3. Exponential distribution

The exponential distribution is the most commonly used model in reliability and
life-testing analysis. The probability density function of a random variable X ,
having the exponential distribution is given by f (x) = θe−θx for x ≥ 0 and θ > 0.

4

The MLE of θ is given by θ̂ = 1
x̄ , where x̄ is the sample mean.

Data were generated from the exponential distribution with parameter θ = 0.5,
and the contaminated data were generated from exponential distribution with θ =

0.05.
For each combination of probability distributions, sample sizes, contamina-

tion levels and winsorization statistics, the generation procedure is repeated 1000
iterations to ensure the convergence.

3.2. Results

The impact of the four outliers winsorization statistics on the parameter esti-
mators is measured by three common indicators as follows:

1. Bias, it is the difference between the estimator’s expected value and the true
value of the parameter being estimated.

2. Mean Square Error, MSE = 1
1000 ∑1000

i=1 (β − β̂i)
2, where β and β̂i are the

true and estimated values of the considered parameters.

3. Goodness −o f − f it tests, are statistical tests aiming to determine whether 
a set of observed values match those expected under the applicable distri-
bution. There are different goodness-of-fit tests, in this article the 
Shapiro-Wilk test is used in the case of normal distribution and 
exponential distri-bution, while the Kolmogorov-Smirnov test is used in 
the case of negative binomial distribution.

The simulation results are summarized in Tables (1-5). Regardless of the
distribution, contamination level, or winsorization statistics employed, the simu-
lation study reveals that the performance of parameter estimators improves with
larger sample sizes. Specifically, the mean squared error (MSE) and bias exhibit
an inverse relationship with the sample size (n < 100), while they stabilize as a
constant function for n ≥ 100. This relationship is partially illustrated in Figure 1.

The performance has a relatively inverse relationship with the contamination 
level (ε).

For the normal distribution, due to its symmetric nature, the mean, median
and mode winsorization statistics have an almost similar effect on the estimators
of the parameters (i.e., µ and σ2), while they outperform the quantile-based win-
sorization statistic as given in Tables (1-2).

For the negative binomial distribution, the mode winsorization statistic slightly
outperforms the other winsorization statistics for higher levels of contamination

5
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Figure 1: MSE of different parameters’ estimators after using winsorization meth-
ods for different sample sizes

(ε ≥ 0.15), while the mean winsorization statistic performs better than other win-
sorization statistics for smaller levels of contamination (ε < 0.15) as presented in
Table 3.

For the exponential distribution (Table 4), the mean winsorization statistic has
the best performance, followed by the median, mode and then the quantile-based
method. This behavior may be referred to the properties of the MLE estimator of
the parameter (θ ), which is mainly the sample mean.

Table 5 presents the proportion of fitted samples by the associated distribu-
tions at 0.05 level of significance before winsorization (ε = 0), where the pro-
portions are close to 0.95 for the considered sample sizes and probability distri-
butions. The proportions of fitted samples have an inverse relationship with the
contamination level. The quantile-based winsorization statistic has the worst per-
formance compared to the other three considered statistics because it accumulates
the winsorizated values at the edges of the distribution and malforms the nature of
the distribution. Thus, the mean winsorization statistic is recommended for most
of the cases, especially for smaller levels of contamination (ε ≤ 0.1).

For normal distribution, mean, median and mode winsorization statistics have
consistent performance with respect to the contamination level and sample size,

6

Table 1: Bias (MSE) of the normal distribution’s mean estimator for different win-
sorization methods

Winsorization methods
n ε Quantile-based Mean Median Mode
20 0 0.005 (0.053) 0.005 (0.059) 0.005 (0.059) 0.005 (0.059)
50 0 0 (0.021) 0.001 (0.023) 0.001 (0.023) 0.002 (0.023)
100 0 0.003 (0.01) 0.004 (0.01) 0.004 (0.01) 0.004 (0.01)
200 0 0.001 (0.005) 0.001 (0.005) 0.001 (0.005) 0.001 (0.005)
20 5 0.111 (0.06) 0.021 (0.058) 0.02 (0.058) 0.02 (0.058)
50 5 0.092 (0.027) 0.019 (0.021) 0.019 (0.021) 0.019 (0.021)
100 5 0.122 (0.025) 0.029 (0.012) 0.029 (0.012) 0.028 (0.012)
200 5 0.12 (0.02) 0.027 (0.007) 0.027 (0.007) 0.026 (0.007)
20 10 0.24 (0.111) 0.074 (0.068) 0.074 (0.068) 0.074 (0.069)
50 10 0.245 (0.081) 0.068 (0.029) 0.067 (0.029) 0.066 (0.029)
100 10 0.244 (0.07) 0.068 (0.017) 0.066 (0.017) 0.065 (0.017)
200 10 0.245 (0.065) 0.064 (0.01) 0.062 (0.01) 0.061 (0.01)
20 15 0.353 (0.18) 0.113 (0.08) 0.111 (0.08) 0.108 (0.082)
50 15 0.399 (0.182) 0.14 (0.049) 0.136 (0.048) 0.132 (0.048)
100 15 0.378 (0.154) 0.121 (0.028) 0.117 (0.027) 0.113 (0.026)
200 15 0.378 (0.149) 0.119 (0.022) 0.115 (0.021) 0.111 (0.02)
20 20 0.489 (0.293) 0.209 (0.118) 0.204 (0.115) 0.204 (0.115)
50 20 0.497 (0.271) 0.189 (0.067) 0.183 (0.064) 0.179 (0.062)
100 20 0.509 (0.271) 0.193 (0.054) 0.186 (0.051) 0.179 (0.049)
200 20 0.515 (0.271) 0.197 (0.047) 0.19 (0.044) 0.184 (0.042)

where the proportions of the fitted samples by normal distribution are close to 1
when the contamination level is (ε = 0.05). In the case of an exponential dis-
tribution, all considered winsorization statistics perform approximately the same,
where the proportions of fitted samples by exponential distribution are close to 1
regardless the sample size or contamination level.

The proportions of fitted samples by negative binomial distribution are less
than the other two distributions.

4. Application

A dataset on internet usage was obtained from the Ministry of Telecom and 
Information Technology in Palestine. The dataset comprises more than 2 mil-
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100 5 0.122 (0.025) 0.029 (0.012) 0.029 (0.012) 0.028 (0.012)
200 5 0.12 (0.02) 0.027 (0.007) 0.027 (0.007) 0.026 (0.007)
20 10 0.24 (0.111) 0.074 (0.068) 0.074 (0.068) 0.074 (0.069)
50 10 0.245 (0.081) 0.068 (0.029) 0.067 (0.029) 0.066 (0.029)
100 10 0.244 (0.07) 0.068 (0.017) 0.066 (0.017) 0.065 (0.017)
200 10 0.245 (0.065) 0.064 (0.01) 0.062 (0.01) 0.061 (0.01)
20 15 0.353 (0.18) 0.113 (0.08) 0.111 (0.08) 0.108 (0.082)
50 15 0.399 (0.182) 0.14 (0.049) 0.136 (0.048) 0.132 (0.048)
100 15 0.378 (0.154) 0.121 (0.028) 0.117 (0.027) 0.113 (0.026)
200 15 0.378 (0.149) 0.119 (0.022) 0.115 (0.021) 0.111 (0.02)
20 20 0.489 (0.293) 0.209 (0.118) 0.204 (0.115) 0.204 (0.115)
50 20 0.497 (0.271) 0.189 (0.067) 0.183 (0.064) 0.179 (0.062)
100 20 0.509 (0.271) 0.193 (0.054) 0.186 (0.051) 0.179 (0.049)
200 20 0.515 (0.271) 0.197 (0.047) 0.19 (0.044) 0.184 (0.042)

where the proportions of the fitted samples by normal distribution are close to 1
when the contamination level is (ε = 0.05). In the case of an exponential dis-
tribution, all considered winsorization statistics perform approximately the same,
where the proportions of fitted samples by exponential distribution are close to 1
regardless the sample size or contamination level.

The proportions of fitted samples by negative binomial distribution are less
than the other two distributions.

4. Application

A dataset on internet usage was obtained from the Ministry of Telecom and 
Information Technology in Palestine. The dataset comprises more than 2 mil-
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Table 2: Bias (MSE) of the normal distribution’s standard deviation estima-
tor for different winsorization methods

Winsorization methods
n ε Quantile-based Mean Median Mode
20 0 0.037 (0.027) 0.074 (0.042) 0.074 (0.042) 0.073 (0.042)
50 0 0.02 (0.011) 0.054 (0.017) 0.054 (0.017) 0.053 (0.017)
100 0 0.011 (0.005) 0.039 (0.009) 0.039 (0.009) 0.039 (0.008)
200 0 0.009 (0.003) 0.037 (0.005) 0.037 (0.005) 0.037 (0.005)
20 5 0.095 (0.047) 0.078 (0.05) 0.077 (0.05) 0.072 (0.049)
50 5 0.094 (0.022) 0.032 (0.017) 0.032 (0.017) 0.029 (0.016)
100 5 0.125 (0.023) 0.026 (0.01) 0.026 (0.01) 0.024 (0.01)
200 5 0.123 (0.019) 0.023 (0.005) 0.023 (0.005) 0.022 (0.005)
20 10 0.226 (0.101) 0.014 (0.053) 0.013 (0.053) 0.007 (0.053)
50 10 0.25 (0.081) 0.005 (0.021) 0.005 (0.021) 0.001 (0.021)
100 10 0.252 (0.073) 0.006 (0.01) 0.006 (0.01) 0.009 (0.01)
200 10 0.255 (0.07) 0.005 (0.005) 0.005 (0.005) 0.007 (0.005)
20 15 0.35 (0.183) 0.004 (0.064) 0.005 (0.064) 0.015 (0.065)
50 15 0.401 (0.188) 0.062 (0.036) 0.063 (0.036) 0.069 (0.036)
100 15 0.387 (0.162) 0.048 (0.016) 0.049 (0.016) 0.053 (0.016)
200 15 0.392 (0.159) 0.055 (0.01) 0.055 (0.01) 0.059 (0.01)
20 20 0.487 (0.307) 0.131 (0.109) 0.132 (0.11) 0.142 (0.111)
50 20 0.514 (0.295) 0.125 (0.054) 0.126 (0.054) 0.132 (0.056)
100 20 0.526 (0.291) 0.129 (0.035) 0.13 (0.035) 0.135 (0.037)
200 20 0.532 (0.29) 0.137 (0.028) 0.137 (0.028) 0.141 (0.029)
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Table 3: Bias (MSE) of the negative binomial distribution probability of suc-
cess estimator for different winsorization methods

Winsorization methods
n ε Quantile-based Mean Median Mode
20 0 0.006 (0.001) 0.019 (0.002) 0.02 (0.002) 0.021 (0.002)
50 0 0.004 (0.000) 0.016 (0.001) 0.017 (0.001) 0.018 (0.001)
100 0 0.003 (0.000) 0.015 (0.000) 0.016 (0.001) 0.017 (0.001)
200 0 0.002 (0.000) 0.013 (0.000) 0.014 (0.000) 0.015 (0.000)
20 5 0.013 (0.001) 0.017 (0.002) 0.018 (0.002) 0.019 (0.002)
50 5 0.014 (0.000) 0.011 (0.001) 0.012 (0.001) 0.014 (0.001)
100 5 0.017 (0.000) 0.01 (0.000) 0.011 (0.000) 0.014 (0.001)
200 5 0.018 (0.000) 0.008 (0.000) 0.01 (0.000) 0.013 (0.000)
20 10 0.031 (0.001) 0.005 (0.002) 0.007 (0.002) 0.009 (0.002)
50 10 0.034 (0.001) 0.001 (0.001) 0.003 (0.001) 0.006 (0.001)
100 10 0.034 (0.001) 0.002 (0.000) 0.000 (0.000) 0.004 (0.000)
200 10 0.034 (0.001) 0.001 (0.000) 0.001 (0.000) 0.006 (0.000)
20 15 0.045 (0.002) 0.006 (0.002) 0.004 (0.002) 0.001 (0.002)
50 15 0.049 (0.002) 0.019 (0.001) 0.017 (0.001) 0.015 (0.001)
100 15 0.047 (0.002) 0.015 (0.001) 0.013 (0.001) 0.009 (0.001)
200 15 0.046 (0.002) 0.016 (0.000) 0.014 (0.000) 0.01 (0.000)
20 20 0.056 (0.003) 0.03 (0.002) 0.029 (0.002) 0.027 (0.002)
50 20 0.056 (0.003) 0.034 (0.002) 0.032 (0.002) 0.03 (0.002)
100 20 0.056 (0.003) 0.037 (0.002) 0.035 (0.002) 0.032 (0.002)
200 20 0.056 (0.003) 0.04 (0.002) 0.038 (0.002) 0.036 (0.002)
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Table 4: Bias (MSE) of the exponential distribution’s rate estimator for dif-
ferent winsorization methods

Winsorization Methods
n ε Quantile-based Mean Median Mode
20 0 0.004 (0.016) 0.116 (0.049) 0.127 (0.054) 0.147 (0.064)
50 0 0.013 (0.006) 0.101 (0.022) 0.11 (0.025) 0.127 (0.031)
100 0 0.018 (0.003) 0.094 (0.015) 0.102 (0.017) 0.118 (0.021)
200 0 0.023 (0.002) 0.092 (0.012) 0.1 (0.013) 0.116 (0.017)
20 5 0.069 (0.017) 0.077 (0.033) 0.092 (0.037) 0.115 (0.045)
50 5 0.039 (0.007) 0.08 (0.018) 0.093 (0.021) 0.116 (0.028)
100 5 0.045 (0.004) 0.07 (0.01) 0.082 (0.012) 0.107 (0.018)
200 5 0.043 (0.003) 0.066 (0.007) 0.078 (0.009) 0.104 (0.014)
20 10 0.13 (0.025) 0.055 (0.024) 0.076 (0.029) 0.106 (0.038)
50 10 0.108 (0.016) 0.052 (0.012) 0.07 (0.015) 0.103 (0.022)
100 10 0.102 (0.012) 0.051 (0.007) 0.069 (0.009) 0.103 (0.016)
200 10 0.101 (0.011) 0.047 (0.004) 0.063 (0.006) 0.098 (0.012)
20 15 0.179 (0.038) 0.038 (0.018) 0.064 (0.022) 0.1 (0.032)
50 15 0.151 (0.026) 0.042 (0.01) 0.065 (0.013) 0.103 (0.022)
100 15 0.159 (0.026) 0.03 (0.004) 0.053 (0.007) 0.096 (0.014)
200 15 0.156 (0.025) 0.029 (0.003) 0.051 (0.005) 0.095 (0.012)
20 20 0.227 (0.057) 0.035 (0.019) 0.066 (0.024) 0.11 (0.036)
50 20 0.213 (0.048) 0.029 (0.008) 0.058 (0.011) 0.11 (0.022)
100 20 0.211 (0.045) 0.018 (0.004) 0.046 (0.006) 0.097 (0.014)
200 20 0.209 (0.044) 0.016 (0.002) 0.044 (0.004) 0.097 (0.012)
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Figure 2: Histogram of detected outliers proportion

lion session records for 4,500 randomly selected users from an internet service
provider company in Palestine. Each session in the dataset includes various fea-
tures such as start-time, end-time, traffic, and duration.

In this example, we are interested only in sessions’ durations, which are
commonly hypothesized to be exponentially distributed (see Akmeroth and Am-
maram, 1996, Sripanidkulchai, et al, 2004, Chetlapalli, et al, 2020). Consonance
with that, we assume that sessions’ duration are exponentially distributed; there-
fore, the sessions rows are aggregated for each user. A total of 1,416 (31.467%)
of user sessions’ duration have been fitted by exponential distribution at 0.05 level
of significance according to Shapiro-Wilk goodness-of-fit test.

The outliers of sessions’ duration for each user have been detected. Figure 2
presents the proportions of detected outliers for each user, it ranges between 0%
and 30%, with mean of 6% and it is an obvious positively skewed distribution.

Three winsorization methods are applied to users’ sessions duration data, 
which are identified as outliers. The summary of fitted users before and after win-
sorization is presented in Table 6. The results show that the proportion of fitted 
users data after winsorization is increased significantly, where the mean has the 
highest proportion, followed by the median and then the quantile-based  method 
which are consistent with the findings of the simulation study. The Chi-square 
test of independence shows that there are significant associations between the sta-
tus of users’ sessions duration data (i.e fitted by exponential distribution) before 
and after winsorization at 0.05 level of significance. These associations reveal that 
an insignificant number of the exponentially fitted users data before winsorization

12

Table 6: Summary of fitted users data before and after winsorization by ex-
ponential distribution

After Outliers Winsorization
Statistics Before Mean Median Quantile-based
Proportion of fit 0.31 0.67 0.61 0.56
Chi-square test - 1011.42 1311.84 1632.54
p-value - 0.00 0.00 0.00

has been alternated to be not fitted by exponential after winsorization has been
conducted.

5. Conclusions

The winsorization techniques to handle outliers in univariate data have been 
evaluated via a simulation study. The findings revealed that the nature of the data, 
including its distribution shape, sample size and contamination level, are the key 
factors. Thus, it is recommended to use winsorization techniques for large sam-
ples (n ≥ 100) with a small level of contamination (ε ≤ 0.1). In the case of sym-
metric distributions, any of the central tendency measures can be used, while for 
the asymmetric distributions, the use of the median is recommended. This article 
has focused on three commonly used probability distributions: normal, negative 
binomial, and exponential. However, further studies could explore other univari-
ate and multivariate distributions to gain a more comprehensive understanding. 
Additionally, robust statistics remain a viable alternative to winsorization, and it 
would be valuable to compare their performance in outlier handling techniques.
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