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Abstract The present article gives the point as well as interval estimates for the parame-
ters and lifetime characteristics as reliability and hazard rate functions of the exponenti-
ated inverted Weibull distribution in presence of progressive type-II censored data under
classical and Bayesian approach. The point estimates under classical paradigm are ob-
tained with the help of maximum likelihood estimation procedure and in case of Bayesian
paradigm, gamma prior is used for both unknown parameters under squared error and
linex loss functions. The Metropolis-Hasting algorithm is applied to generate MCMC
samples from the posterior density. In case of interval estimation; bootstrap confidence
intervals (Boot-t and Boot-p) and highest posterior density intervals for the unknown pa-
rameters are computed. The performance of these estimates are studied on the basis of
their simulated risks and length of intervals. Additionally, a real dataset is used to il-
lustrate the proposed censoring technique and a simulation study is used to support the
given study.

Keywords: Progressive censoring, Bayes estimation, Loss function, Metropolis-Hastings
algorithm, Simulated risk.

1. Introduction

In life testing experiments, Weibull distribution is one of the most suitable,
applicable and famous model among the other existing lifetime models. As a re-
sult of the wide diversity of the versatile mechanism, the two parameter Weibull
distribution is used on a large scale in the field of survival and reliability the-
ory; especially for the non-censored data. Generally, there are three parameters
involved in the above distribution namely; scale, shape and location parameters.
The estimation of these parameters can be possible by using the different meth-
ods available in the statistical literature as graphically and analytically. Jiang and
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Murthy (1999) has introduced an approach to characterize the parameters of expo-
nentiated Weibull distribution graphically. Analytical methods include maximum
likelihood estimation, least squares estimation and method of moments, etc. The
analytical techniques of estimation of the parameters are more accurate and reli-
able than the graphical methods (see Dolas et al. (2014)). After that, Mudholkar
and Srivastava (1993) has proposed generalization of the Weibull distribution as
exponentiated Weibull distribution and studied its statistical properties. Later,
Flaih et al. (2012) has proposed a generalization of inverted Weibull (IW) distri-
bution, named as exponentiated inverted Weibull (EIW) distribution, by adding
one more shape parameter exponentially in IW distribution.

Let X be a random variable, said to follow EIW distribution if its probability
density function (PDF) is given as:

f (x;θ ,β ) = θβx−(β+1)(e−x−β

)θ ; x > 0, θ > 0, β > 0 (1)

here, θ and β both are the shape parameters. If we put θ = 1, it will convert
to its baseline inverse Weibull distribution and if we put β = 1 then, it becomes
the exponentiated inverted exponential distribution. The reliability function of the
EIW distribution is given by

R(t;θ ,β ) = 1− (e−t−β

)θ ; t > 0, θ > 0, β > 0

and its associated hazard rate is

h(t;θ ,β ) =
θβ t−(β+1)(e−t−β

)θ

1− (e−t−β
)θ

; t > 0, θ > 0, β > 0.

Flaih et al. (2012) mentioned that the shape of the PDF of the EIW distri-
bution are uni-model and hazard rate function has upside-down bathtub nature.
Singh et al. (2002) has discussed the estimation of parameters for the exponenti-
ated Weibull family under linex loss function and the same distribution is studied
by Singh et al. (2005) for the censored data. Kundu and Howlader (2010a) has dis-
cussed the inferences and prediction of the inverse Weibull distribution in the case
of censored data. Flaih et al. (2012) has discussed the model selection between
EIW and IW distributions.Later, Ahmad et al. (2014) has explained the estimation
of EIW distribution under asymmetric loss functions.

The case of censored data do arise when a researcher may receive incomplete
or partially known data. Specially in reliability and life-testing experiments, in
which items are either lost or removed from experiment before its failure, inten-
tionally or unintentionally. For example, in an experiment, if an individual gives

2



up from the experiment, accidental breakage occurs or some abrupt circumstances
arises like unavailability of testing facilities etc. in such cases, the complete sam-
ple information are difficult to be found. These type of datasets are know as
censored data. In general, there are two conventional censoring schemes named,
type-I and type-II censoring schemes.
The type-I censoring scheme, due to time constraint, also known as time censor-
ing. Under this scheme, the number of failure observations is random and may
vary from experiment to experiment but the time duration of the study is fixed
in advanced for each of the experiment. This censoring scheme has advantage
of saving time duration of the experiment. While, in the type-II censoring, in-
vestigator fixes the number of observations before the experiment started. Such
type censoring is also known as failure censoring, since the number of the ob-
servations is prefixed. Here, duration of the life-test is a random variable i.e. it
may vary from experiment to experiment whereas, the number of observation is
fix known constant, thus, it ensures the availability of a fixed number of observa-
tions for the study. See Ng et al. (2006), Balakrishnan et al. (2007), Kundu and
Howlader (2010b), Joarder et al. (2011), Dey and Kundu (2012), Han and Kundu
(2015), Prajapati et al. (2020) and Goyal et al. (2019) etc. for more details about
censoring scheme and estimation of the parameter for censored data. The type-
II censoring ensures about the number of observations, it guarantees the desired
efficiency of the inferential procedure. But these two censoring schemes do not
allow the dropping or removal of any experimental unit before their failure. Later
Balakrishnan and Sandhu (1995) has discussed the algorithm of a more advanced
censoring scheme called, progressive type-II censoring (PTIIC) scheme, which
allows the flexibility of removals. PTIIC is the generalization of failure censoring
(type-II) scheme. Initially, the PTIIC scheme has been discussed by Herd (1956),
even though he referred to them as “multi-censored samples”. After that, the
importance and applicability of the progressive censoring scheme have been dis-
cussed by Cohen (1963) and Viveros and Balakrishnan (1994) obtained the inter-
val estimation of lifetime under PTIIC scheme. Later Balakrishnan et al. (2003),
Kundu (2008) and Kundu and Biswabrata (2009) have discussed the scheme for
different distributions. Almetwally et al. (2023) have discussed the Bayesian anal-
ysis under progressive type -II censoring for unit- Weibull distribution. For more
literature, reader may refers to Aggarwala and Balakrishnan (1998), Ng and Chan
(2007), Raqab et al. (2010) and El-Din and Shafay (2013) etc.
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Figure 1: Schematic representation of progressive Type-II censoring scheme.

1.1. Progressive Censoring & its Likelihood Function

In the PTIIC scheme, along with the failure items, removals are also play an
important role. The scheme is discussed below.

1. Suppose ‘n’ units are placed in a life testing experiment at time zero (start-
ing point of time) and ‘m’ failure times are going to be observed with pre-
decided removal scheme r = (r1,r2, ...,rm). Here all ri

′s (i = 1,2, · · · ,m)

are positive integers.

2. At the time of first failure, r1 of the surviving units randomly selected from
the remaining ‘n− 1’ units and removed. At the time of second failure, r2

of the surviving units are randomly selected from the resting ‘n− 2− r1’
items and removed from the life-test experiment.

3. After that, at the time of mth failure, all the waiting units rm = n− r1− r2−
...−m are removed and then the experiment is stopped.

Here, the observed failure times are denoted by xi:m:n, where i denotes the ith

failure time, m denotes the total number of observation required (prefixed) and n
denotes the total number of items placed on life test. Thus, the observed sample
information in PTIIC scheme is x1:m:n,x2:m:n, · · · ,xm:m:n. A pictorial representation
of PTIIC scheme is given in Figure 1.

The likelihood function in the PTIIC scheme, (see Balakrishnan and Sandhu
(1995)) is as follows;

L(xi | θ ,β ) =C
m

∏
i=1

f (xi | θ ,β )[1−F(xi | θ ,β )]ri (2)
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where C is the constant, formulated as:

C = n× (n− r1−1)×·· ·× (n− r1− r2−·· ·− rm−1−m+1). (3)

The main emphasis of this paper is to test the efficacy of Bayes estimates
for the parameters of the EIW distribution based on PTIIC. Motivated by these
literature, here, we are trying to find better estimator for the parameter of EIW
distribution using squared error and linex loss functions. The rest of the article is
organized as follows: Section 2, deals with the classical estimation of parameters
and Section 3, discusses the technique of Bayesian estimation for the parameters
with very short description of prior, loss functions, posteriors, and M-H algorithm.
Algorithm for a generation of the sample from PTIIC scheme is introduced in
Section 4. In Section 5, techniques of parametric bootstrap confidence interval
and HPD interval are discussed to construct the CIs for the unknown parameters.
A brief study on simulation is discussed in Section 6. Particular real dataset is
analyzed in the Section 7, and the conclusions of the present paper are commented
in the last Section 8.

2. Classical Estimation

In this section, we have discussed the MLE of the parameters θ and β based
on the data observed under the PTIIC scheme (as discussed in the Subsection 1.1).

2.1. Maximum Likelihood Estimator

Let x = {x1:m:n,x2:m:n, · · · ,xm:m:n} be a random sample from the EIW distri-
bution with the PDF given in the equation (1). Then, the likelihood function by
using the equation (2) is

l(θ ,β | x) =C
m

∏
i=1

θβxi
−(β+1)(e−xi

−β

)θ [1− (e−xi
−β

)θ ]
ri
.

And, the log of likelihood function is

L(θ ,β | x) = logC+
m

∑
i=1

log
[
θβxi

−(β+1)(e−xi
−β

)θ [1− (e−xi
−β

)θ ]
ri
]
. (4)

Where constant C is given in equation (3). Therefore, the ML estimator of the
parameter θ and β can be obtained by differentiating the log likelihood function
with respect to the corresponding parameters and equating to zero, we get

∂ logL
∂θ

=
n

∑
i=1

[
1
θ
− xi

−β + ri
(e−xi

−β

)θ xi
−β{

1− (e−xi−β
)θ
}]= 0.
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∂ logL
∂β

=
n
β
−

n

∑
i=1

logxi +θ

n

∑
i=1

logxi

xi
β
−

n

∑
i=1

ri
(e−xi

−β

)θ θxi
−β logxi{

1− (e−xi−β
)θ
} = 0.

Since the above likelihood equations are not in close form and thus can not be
solved it analytically. Therefore, to obtain the the solution from these likelihood
equations, we have used Newton-Raphson method based on an iterative proce-
dure. After getting the ML estimator of the parameters, the estimated reliability
R̂ML and hazard rate function ĥML at specific time t can be obtained by using the
in-variance property of ML estimator. Thus,

R̂ML = 1− (e−t−β̂ML
)θ̂ML ; t > 0, θ > 0, β > 0.

And

ĥML =
θ̂MLβ̂MLt−(β̂ML+1)(e−t(−β̂ML))θ̂ML

1− (e−t−β̂ML )θ̂ML
; t > 0, θ > 0, β > 0.

Here, θ̂ML and β̂ML are the ML estimator of the parameters θ and β respectively.

3. Bayes Method of Estimation

In this section we have considered another approach namely Bayesian method.
The reason behind the consideration is that, in the Bayesian approach added more
flexible and accurate result as it incorporate prior knowledge with the sample in-
formation. Another advantage of the consideration is that, the Bayesian approach
provides more appropriate results in small as well in large sample.

In Bayesian paradigm, posterior distribution is an effect of two components
namely, a prior distribution and the likelihood function, calculated from the sta-
tistical model for the observed data. The prior distribution is the distribution of
the parameter assumed before the data observed. The choice of the prior distri-
bution may not be easily determined. For the selection of the prior distribution,
one can see Berger and Sun (1993), Raqab and Madi (2005) and Singh et al.
(2016). There are mainly two different categorization to the prior distribution of
parameters defined as proper and improper prior. Another way to defined priors
are based on information available in advance and called as informative and non-
informative prior. Here, we use the prior distribution for θ and β as Gamma(a,b)
and Gamma(c,d) respectively to obtain the posterior distribution.
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The choice of the hyper-parameters of the priors (θ ,β ) are based on the in-
formation available in term of prior mean and prior variance. This chosen value of
the hyper-parameter may be taken in a way that if we choose any two independent
information as prior mean and variance of the priors (θ ,β ), then (µ1 = a/b,σ1 =

a/b2) and (µ2 = c/d,σ2 = c/d2) respectively. Here, µ1 and µ2 are the true mean
value of the parameter (θ ,β ) respectively and σ1 and σ2 are the true variance of
the parameter (θ ,β ) respectively. Now by using this information, the hyper pa-
rameters can be easily evaluated from this relation, (a = µ1/σ1,b = µ2

1/σ1) and
(c = µ2/σ2,d = µ2

2/σ2) respectively. See Kundu (2008), Singh et al. (2013), Dey
et al. (2016), Singh et al. (2016) and El-Sherpieny et al. (2022) for more details
about the choice of the hyper-parameters. Now, the joint prior distribution of θ

and β is given as

π(θ ,β ) ∝ θ
a−1

β
c−1e−bθ−dβ ; (θ ,β )> 0,(a,b,c,d)> 0. (5)

3.1. Loss Function

“A loss function is a function that maps an event or the values of one or
more variables on a real number intuitively representing some cost associated
with the even". In Bayesian statistics, a loss function is used for the estimation
of parameters. Here we have considered two different widely used loss functions
namely Squared Error Loss Function (SELF) and Linex Loss Function (LLF).

1. Squared Error Loss Function: It is a commonly used symmetric loss func-
tion, defined as

L(θ̂BS,θ) = (θ̂BS−θ)2

where θ̂BS is the Bayes estimator under SELF for the given parameter θ .

2. Linex Loss Function: This loss function is an asymmetric loss function.
Zellner (1986) proposed this loss function for the estimation and prediction
of a scaler parameter. The form of LLF is given as

L(θ̂BL,θ) = eδ (θ̂BL−θ)−δ (θ̂BL−θ)−1

where δ , 0 is a constant which determines the shape of the loss function.
In particular, the LLF increases almost linearly for negative error and al-
most exponentially for positive error. Thus, under this loss function, over
estimation is considered to be more serious than the under estimation. The
behavior of the LLF for the small values of δ , is approximately same as the
SELF.
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3.2. Posterior Probability Density Function

Let x = {x1:m:n,x2:m:n, · · · ,xm:m:n} be a random sample from EIW distribution
and the parameters θ and β have prior probabilities π(θ) and π(β ) respectively.
Then by using equations (4) and (5), the joint posterior density function is given
as:

π(θ ,β | x) =
π(θ ,β )L(θ ,β | x)

∞∫
0

∞∫
0

π(θ ,β )L(θ ,β | x)dθdβ

; θ > 0,β > 0

∝ θ
a−1

β
c−1e−bθ−dβ

m

∏
i=1

θβxi
−(β+1)

× (e−xi
−β

)θ [1− (e−xi
−β

)θ ]
ri
. (6)

Now, the Marginal posterior densities of the parameters θ and β can be ob-
tained by integrating the equation (6) with respect to β and θ respectively. And it
can be written as equation (7) and equation (8) respectively as

π(θ | xi) =
∫

∞

0
π(θ ,β | xi)dβ

∝

∞∫
0

θ
a−1

β
c−1e−bθ−dβ

m

∏
i=1

θβxi
−(β+1)

× (e−xi
−β

)θ [1− (e−xi
−β

)θ ]
ri

dβ . (7)

π(β | xi) =
∫

∞

0
π(θ ,β | xi)dθ

∝

∞∫
0

θ
a−1

β
c−1e−bθ−dβ

m

∏
i=1

θβxi
−(β+1)

× (e−xi
−β

)θ [1− (e−xi
−β

)θ ]
ri

dθ . (8)

3.2.1. Bayes Estimator under SELF

The Bayes estimator under the SELF is nothing but the posterior mean of the
corresponding parameters. Let it is denoted by θ̂BS and. Therefore, the Bayes
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estimator of the parameter θ can be obtained as:

θ̂BS = E(θ̂) =
∫

∞

0
θπ(θ | xi)dθ

∝

∫
∞

0
θ

∞∫
i=0

θ
a−1

β
c−1e−bθ−dβC

m

∏
i=1

θβ

× xi
−(β+1)(e−xi

−β

)θ [1− (e−xi
−β

)θ ]
ri

dβdθ .

Similarly, the Bayes estimator of the parameter β can be obtained as:

β̂BS = E(β̂ ) =
∫

∞

0
βπ(β | xi)dβ

∝

∞∫
0

β

∞∫
0

θ
a−1

β
c−1e−bθ−dβC

m

∏
i=1

θβ

× xi
−(β+1)(e−xi

−β

)θ [1− (e−xi
−β

)θ ]
ri

dθdβ .

3.2.2. Bayes Estimator under LLF

Since, the Bayes estimator for the parameter θ under LLF (say θ̂BL) is defined as[−1
a logE(e−aθ )

]
. Thus, for the considered distribution, the expression is given

as:

θ̂BL =
−1
a

log

 ∞∫
0

e−aθ
π(θ | xi)dθ


∝
−1
a

log
∞∫

0

e−aθ

∞∫
0

θ
a−1

β
c−1e−bθ−dβ

×
m

∏
i=1

θβxi
−(β+1)(e−xi

−β

)θ [1− (e−xi
−β

)θ ]
ri

dβdθ .
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Similarly, the Bayes estimator for the parameter β is:

β̂BL =
−1
a

log

 ∞∫
0

e−aβ
π(β | xi)dβ


∝
−1
a

log
∞∫

0

e−aβ

∞∫
0

θ
a−1

β
c−1e−bθ−dβ

×
m

∏
i=1

θβxi
−(β+1)(e−xi

−β

)θ [1− (e−xi
−β

)θ ]
ri

dθdβ .

3.3. MCMC Simulation

Since, the expressions for the Bayes estimators under SELF and LLF are
not in closed form. So it needed some algorithm to draw sample and find its
estimates. One of the famous and efficient technique of doing so is Markov Chain
Monte Carlo (MCMC) method. One may refer Gilks et al. (1995), Gelfand (1996),
Dagpunar (2007), Marin and Robert (2007), Chen et al. (2012) and Robert and
Casella (2013) for more about MCMC technique. The integral involved in Bayes
estimators do not solve analytically. In such a situation, MCMC methods namely
Metropolis-Hastings (M-H) algorithm (see Hastings (1970)) can be effectively
used.

To obtain the MCMC samples from the posterior probability π(θ | data), us-
ing the Metropolis-Hastings (M-H) algorithm, we have considered a normal dis-
tribution as the proposal density i.e. N(µ,Σ) where Σ is the variance-covariance
matrix. It may be the point here that, if we generate observation from the nor-
mal distribution, we may get negative values also which are not possible as the
parameters under consideration are positive valued. Therefore, we take the ab-
solute value of generated observation. The M-H algorithm starts with an initial
value of the parameter say θ 0 and specified a rule for simulating the tth value in
the sequence θ t given the (t−1)st value in the sequence θ t−1. This rule consists
of a proposal density which simulates a candidate value say θ ∗ and acceptance
probability say P. This algorithm can be described as follows:

1. Set the initial guess of parameter θ , say θ 0 from uniform U(0,1).

2. Simulate a candidate value θ ∗ from a proposal density p(θ ∗ | θ t−1).

3. Compute the ratio R= π(θ ∗)p(θ t−1|θ ∗)
π(θ t−1)p(θ ∗|θ t−1)

.

4. Compute acceptance probability P = min{R,1}.
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5. Take a sample value θ t , such that, θ t = θ ∗ with probability P; otherwise
θ t = θ t−1.

After getting MCMC samples from posterior distribution, we can find the Bayes
estimates for the parameters in the following way

E(θ |data) =
1

N−N0

N

∑
i=N0+1

θi

where N0 is burn-in period of Markov chain and N be the sufficiently large number
of replications. In using the above algorithm, the problem arises how to choose
the initial guess. Here, we propose to the use of ML estimate of the parameter θ ,
obtained by using the method described in subsection 2.1, as the initial value for
MCMC processes. The choice of covariance matrix Σ is also an important issue,
one can follow Ntzoufras (2011) for more details. One choice for Σ would be the
asymptotic variance-covariance matrix I−1(θ̂). While generating M-H samples by
taking Σ= I−1(θ̂), we noted that the acceptance rate for such a choice of Σ is about
30%. By acceptance rate, we mean the proportion of times a new set of values is
generated at the iteration stages. It is well known that if the acceptance rate is low,
a good strategy is to run a small pilot run using diagonal Σ as a rough estimate
of the correlation structure for the target posterior distribution and then re-run
the algorithm using the corresponding estimated variance-covariance matrix; for
more detail see (Gelman et al., 2013, pp. 334-335), Kaushik et al. (2017) and
Maurya et al. (2017).

4. Algorithm for Sample Generation under PTIIC Scheme

We have used the following steps to generate a PTIIC sample from the EIW
distribution. The steps are:

1. Specify the values of n, m, α˜ = (θ ,β ) and r = (r1,r2, ...,rm).

2. Generate m i.i.d. random numbers w1,w2, ...,wm from uniform U(0,1) dis-
tribution.

3. Set Vi = wi
1/(i+

m
∑

j=m−i+1
r j)

; for i = 1,2, ...,m.

4. Set Ui:m:n = 1−VmVm−1...Vm−i+1 for i = 1,2, ...,m. Then U1:m:n,U2:m:n, ...,
Um:m:n are the required PTIIC sample from the uniform U(0,1) distribution.

5. Finally, set xi:m:n = F−1(Ui:m:n), for i = 1,2, ...,m, where F−1(·) is the in-
verse distribution function of EIW distribution.
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Then, x1:m:n,x2:m:n, ...,xm:m:n are the required n random PTIIC sample from the
EIW distribution.

5. Interval Estimation

In this section we have computed confidence intervals for the parameters of
the EIW distribution under classical and the Bayesian setup. In classical setup, we
have calculated parametric boot strep intervals namely; Boot-p and Boot-t. While
in the Bayesian setup, we have calculated the highest posterior density (HPD)
intervals. The details about these intervals are given below.

5.1. Bootstrap Confidence Interval

Sometime the class intervals based on the asymptotic property or the normal
theory assumption do not perform good for small samples. In that situation, the
use of bootstrap methods, one can obtain the accurate intervals without using the
normal theory assumption. The bootstrap methods make computer-based adjust-
ments to the standard intervals endpoints and surely improve the coverage accu-
racy by an order of magnitude, at least asymptotically. Here, we have discussed
two types of CIs using bootstrap method. The parametric percentile bootstrap
(Boot-p) suggested by Efron (1982) and parametric studentized bootstrap (Boot-
t), suggested by Hall (1988). See Efron (1992) and DiCiccio and Efron (1996) for
more details about bootstrap CIs.

5.1.1. Parametric Boot-p

An algorithm for the Boot-p CIs is as follows:

1. Assemble the PTIIC data and obtain ML estimators for the parameters θ &
β , denoted as θ̂ML & β̂ML.

2. Generate a PTIIC sample by using ML estimators of the parameters based
on pre-specified removal scheme r = (r1,r2, ...,rm).

3. Generate B number of bootstrap samples from the above generated samples.

4. Obtain ML estimators for each B bootstrap sample, denoted as
{

θ̂ ∗1 , β̂
∗
1

}
,{

θ̂ ∗2 , β̂
∗
2

}
, ...,

{
θ̂ ∗B, β̂

∗
B

}
.

5. Arrange these generated samples in ascending orders as
{

θ̂ ∗(1), θ̂
∗
(2), ..., θ̂

∗
(B)

}
and

{
β̂ ∗(1), β̂

∗
(2), ..., β̂

∗
(B)

}
.
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A pair of 100(1−α)% Boot-p CIs for θ & β are given by
[
θ̂ ∗(Bα/2), θ̂

∗
(B(1−α/2))

]
and

[
β̂ ∗(Bα/2), β̂

∗
(B(1−α/2))

]
respectively.

5.1.2. Parametric Boot-t

The algorithm for generating p-Boot is very simple, though, if the sample size is
very small then, percentile approach is not so much accurate. Thus, in this condi-
tion, studentized t bootstrap (Boot-t) approach can be used. It gives more accuracy
to results than the percentile approach. The algorithm of the Boot-t CIs is just an
extension of the algorithm of p-Boot.

5. Repeat step 1-4 as in Boot-p approach.

6. Compute, standard errors of the parameters, denoted as
{ ˆse1

∗(θ), ˆse1
∗(β )}, { ˆse2

∗(θ), ˆse2
∗(β )}, · · · , { ˆseB

∗(θ), ˆseB
∗(β )}.

7. Compute, statistics z∗B(θ) =
θ̂ ∗B−θ̂ML

ˆseB
∗(θ) and z∗B(β ) =

β̂ ∗B−β̂ML
ˆseB
∗(β ) .

8. Arrange z∗B(θ) and z∗B(β ) in ascending orders, denoted as z∗(B)(θ) and z∗(B)(β ).
A pair of 100(1−α)% Boot-t CIs for θ & β are given by[

θ̂ML− z∗(B(1−α/2))(θ)∗ ŝe(θ), θ̂ML + z∗(Bα/2)(θ)∗ ŝe(θ)
]

and [
β̂ML− z∗(B(1−α/2))(β )∗ ŝe(β ), β̂ML + z∗(Bα/2)(β )∗ ŝe(β )

]
respectively.

5.2. Highest Posterior Density Interval

The HPD credible intervals (see Box and Tiao (1973) and Chen and Shao
(1999)) of the parameter α˜ = (θ ,β ) are obtained on the basis of ordered MCMC
samples of α as α˜(1),α˜(2), · · · , α˜(N). After that, 100(1−α)% credible interval for
the parameter α˜ is obtained as ((α˜(1), α˜ [(1−α)N]+1), · · · ,(α˜ [Nα],α˜N).) Where [Y ]
denotes the largest integer less than or equal to Y . The, HPD credible intervals
provides shortest length CIs. See also Edwards et al. (1963), Ng et al. (2006),
Kundu and Howlader (2010b) and Singh et al. (2013) etc.
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6. Simulation Study

In this section we have performed simulation study based on the PTIIC sam-
ples for EIW distribution and estimates the parameters of the model under the
above discussed classical and Bayesian methods. We have also calculated the CIs
for the model parameters along with the model survival and hazard rate functions.
We have calculated here the simulated risk function also. Performance of Bayes
estimators and ML estimators are examined based on the simulation. The steps
involve to perform the study are enumerated as follows.

1. Generate PTIIC samples using the algorithm discussed in the Section 3 for
particular values of n, m, θ , β and r.

2. The ML estimators of the parameters, reliability and hazard rate function
have been computed for these particular values.

3. In case of Bayesian analysis, we have assumed that both the parameters
have gamma prior. The chosen values of the hyper-parameters are taken as
a = 0.2, b = 0.2, c = 0.2 & d = 0.2, as particular case. The reason behind
the choice of this hyper-parameter is to the consideration of informative
prior. Also, the choice of hyper-parameters for the gamma prior should
be guided by a combination of prior knowledge. One can choose large
variance prior in case of lack of prior knowledge or it may be appropriate
to choose hyper parameters that result in relatively flat or non-informative
priors. As, we know that, in EIW distribution, both of the parameters play
the role of shape parameters and both are sensitive for the shape of the
distribution. So here, we have chosen same combination for choice of this
hyper-parameter, as true mean 1 and true variance 5 for both of the hyper-
parameters. Also, for the considered combination, when mean>variance,
both the gamma priors of the parameters covers wide variation. For more
details, see Section 3.

4. M-H algorithm of MCMC technique has been used to generate posterior
samples.

5. From these simulated posterior samples, the Bayes estimators of the param-
eters, survival and hazard rate under the assumption of the above prior using
SELF and LLF have been obtained.

6. Only one choice of loss function parameter δ is considered (δ = 0.1 as
particular case) for LLF.
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7. Boot-p and Boot-t CIs have obtained under classical set-up. And in Bayesian
paradigm, we have constructed 95% HPD CI for both the parameters.

8. The values of the estimates, survival and hazard rate at time t = 1 have
been reported in the Tables 5-7. Here the arbitrary chosen true value of the
parameters (θ ,β ) are taken as (2,2). Table 8, shows the risks of these pa-
rameters under different estimation techniques and CIs for these estimators
are mentioned in Tables 9-10.

9. The estimates of the parameters θ & β for m = 32 for varying combinations
of values of the parameters as (θ ,β ) = (1.2, 2), (3, 2), (2, 0.5) & (2, 1.5) with
their associated risks and estimators of survival and hazard rate functions in
presence of different removal schemes under PTIIC as R1,R2,R3 & R4 have
been tabulated from Tables 11-13.

The Figure 2, gives an idea about the quantiles of the parameters θ & β

respectively. These are based on the MCMC samples, which explains the proba-
bility (P(X ≤ x) > 0.1,0.5,0.9), where X is a random variable. In our case, it is
for θ and β parameters and x is the particular values of the MCMC sample.

For simulation study, we have generated different random samples of size n
= 50, m = 20, 30, 32 and 40 with the parameters θ = 2 & β = 2 from EIW PTIIC
and taken different censoring schemes R1,R2,R3 and R4. The complete schemes
along with these parameters values are given in Table 4. The simulation results
for these schemes are given in the Tables 5-13.

Under different censoring schemes (see Table 4) p∗q (means number p is
repeated q times) and for different parameter values, we conclude the following:

1. From the Table 8, the risks of the Bayes estimators are lesser as compared
to the risk of the ML estimators. This table also shows that the risk of the
ML estimator for the parameter θ is less than the parameter β for all the
considered value of m and considered different removable schemes. But no
such pattern found in case of risk of the Bayes estimators under different
loss functions except m = 20, which shows the reverse result as in classical
ML estimation under different removable schemes.

2. From the Table 8, we observed that, the risk of the Bayes estimators of the
parameters, under LLF is consistently smaller than the risk of the estimators
under SELF.

3. This table also shows that, for all the considered values of m, the Bayes risk
under LLF are concentrated and converses to zero. So, this method may be
accepted for this distribution.
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4. From Tables 9 and 10, we see that the length of HPD intervals is smaller
than the length of Boot-t CI and Boot-t is smaller than Boot-p CI for both
the parameters θ and β .

5. From Table 12, we may conclude that the Bayes estimators have lesser risk
as compared to classical estimation for different combinations of the pa-
rameters θ & β . One point is also noticeable that, for the EIW distribution,
both the parameters (θ ,β ) are play the role of shape parameter and both are
sensitive.

6. This table also shows that, for any parameter (θ or β ) smaller risk is asso-
ciated with smaller value of parameter and vice-versa.

7. This table also shows that the under R2 scheme, for all the combination of
the parameters, risk under classical estimators are maximum for both the
parameters.

8. This table also shows that, for all the considered parameters (θ or β ) the
Bayes risks under LLF are concentrated and converses to zero. So, this
method may be accepted for this distribution.

7. Real Data Analysis

Hare we have considered a real dataset of the remission time (in months)
of 128 bladder cancer patients data, to show the applicability of the considered
model in classical as well as Bayesian context in complete as well as in censored
case. The dataset was reported by Lee and Wang (2003), and is given in Table 1.

The ML estimate of the parameters (θ and β ), survival and hazard rate func-
tion based on the complete sample (n = 128) are obtained as θ̂ML = 2.4262,
β̂ML = 0.7551, ŜML(t = 1) = 0.9116 & ĥML(t = 1) = 0.1776 respectively. The
Bayes estimate for the parameters θ and β , survival and hazard rate under SELF
are θ̂BS = 2.1961, β̂BS = 0.7370, ŜBS(t = 1) = 0.8888, ĥBS(t = 1) = 0.2026 re-
spectively and under LLF estimates are θ̂BL = 2.1941, β̂BL = 0.7370, ŜBL(t =
1) = 0.8885, ĥBL(t = 1) = 0.2028 respectively.

A PTIIC sample of size m = 80 is selected randomly from the complete sam-
ple of size n = 128 with the censoring scheme R = (0∗32,3∗16,0∗32). The point
and the interval estimates of the parameters are given in the Table 2. This table,
shows the ML estimates and the Bayesian estimates based on MCMC technique
using SELF and LLF for both parameters θ & β along with the interval estimates
of both the parameters using bootstrap confidence intervals (Boot-p and Boot-t)
technique and highest posterior density intervals.
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The point and the interval estimates of the survival and hazard rate function
at different times t = 3,6 and 12 are given in Table 3. From this table, one can
observed that the length of the interval become shorter with respect to increase in
time for all the considered times. And also, the length of the intervals are shortest
in case of HPD intervals (here LL stands for lower limit and UL stands for upper
limit of the intervals).

8. Conclusion

In this paper, we have proposed point as well as interval estimation under
classical and Bayesian context of the parameters for the exponentiated inverse
Weibull distribution. We have also estimated the survival and hazard rate func-
tions of the considered model under progressive type-II censoring using maxi-
mum likelihood estimation and Bayesian analysis using gamma prior under SELF
and LLF. Both the classical and Bayesian analyses methods have their own ad-
vantages and limitations, and this depends on factors such as the availability of
prior information, the desire for uncertainty quantification. We have also obtained
the confidence intervals for the parameters using parametric bootstrap methods
(namely Boot-t and Boot-p) and Bayesian HPD intervals. We have taken a sim-
ulation study by using MCMC technique to compute the point estimations and
their corresponding confidence intervals. From simulated study, we can conclude
that the Bayes estimators with an informative gamma prior may be used particu-
larly when prior information is known. We also find that the Bayes risks is always
smaller than the classical risks. Also, the Bayes risks under LLF for all the consid-
ered parameters (θ or β ) values and m more concentrated and converses to zero.
So, one can also this method while dealing with EIW distribution. The perfor-
mance of HPD intervals seems comparatively good because the computed risks
are considerably smaller as compared to classical method as well as the length of
the HPD intervals are minimum with respect to the bootstrap intervals.

In the simulation study, the results of estimated parameters and their con-
fidence intervals as Boot-p, Boot-t and HPD intervals have also provided. The
characteristics based on the functional form of parameters like survival and hazard
rate functions with their confidence intervals have also provided under different
censoring schemes.

The results obtained under this study may be motivate to researchers of the
field of statistical inference to consider the facts for the better application of EIW
distribution in real life testing circumstances.
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Figure 2: Cumulative quantile plot for the parameters θ and β .

Table 1: Remission times (in months) of 128 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23
3.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57 5.06 7.09
9.22 13.8 25.74 0.5 2.46 3.64 5.09 7.26 9.47 14.24

25.82 0.51 2.54 3.7 5.17 7.28 9.74 14.76 6.31 0.81
2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
7.39 10.34 14.83 34.26 0.9 2.69 4.18 5.34 7.59 10.66

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
5.49 7.66 11.25 17.14 79.0 51.35 2.87 5.62 7.87 11.64

17.36 1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4
5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25 8.37 12.02
2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76

12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69.
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Table 2: Point and interval estimates of the parameters (θ , β ) under different
techniques for the real dataset.

ML Boot-t Boot-p SELF LLF HPD

θ 2.7130 (1.7675, 3.5487) (2.0886, 4.7906) 2.4000 2.3974 (1.9633, 2.8526)

β 0.6134 (0.4326, 0.7373) (0.5079, 0.893) 0.5858 0.5857 (0.5004, 0.672)

Table 3: Point and interval estimates of survival and hazard rate functions
under different techniques and time points for the real dataset.

ML Boot-t Boot-p SELF LLF HPD ML Boot-t Boot-p SELF LLF HPD

time Ŝ(t) length length S̃(t) S̃∗(t) length ĥ(t) length length h̃(t) h̃∗(t) length

t=3 0.2509 0.127 0.1366 0.2834 0.2837 0.0679 0.2828 0.2295 0.3322 0.2462 0.2459 0.1178

t=6 0.4050 0.0551 0.0513 0.4316 0.4320 0.0245 0.0924 0.0577 0.0728 0.0820 0.0819 0.0295

t=12 0.5539 0.0196 0.0404 0.5713 0.5716 0.017 0.0302 0.0132 0.0137 0.0273 0.0273 0.0066

Table 4: Different censoring schemes (CS) considered for simulation study.

n m R1 R2 R3 R4

20 0*5,2*15 0*5,4*7,2*1,0*7 0*1,6*2,0*2,2*5,4*2,0*8 0*1,6*2,0*2,2*4,0*6,2*5
50 30 0*20,2*10 0*10,2*10,0*10 4*5,0*25 2*5.0*10,2*5

32 2*8, 0*23, 2*1 1*18, 0*14 3*6, 0*26 0*23, 1*3, 4*3, 1*3
40 0*35,2*5 1*10,0*30 2*5,0*35 0*10,2*5,0*25
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Table 5: Simulation study of estimated values of θ for varying sample sizes
under different estimation methods

R1 R2 R3 R4

m=20 θ̂ML 2.8684 3.3939 3.1899 2.692
θ̂BS 1.8727 2.0429 1.9924 1.8326
θ̂BL 1.8683 2.0375 1.9871 1.8284

m=30 θ̂ML 2.3942 2.827 2.4023 2.3008
θ̂BS 1.7508 1.9373 1.7648 1.7136
θ̂BL 1.7472 1.9328 1.761 1.7101

m=32 θ̂ML 2.3779 2.5968 2.3734 2.3533
θ̂BS 1.761 1.8608 1.7586 1.7371
θ̂BL 1.7573 1.8567 1.7548 1.7336

m=40 θ̂ML 2.1382 2.2624 2.2165 2.3674
θ̂BS 1.6555 1.7226 1.6972 1.7817
θ̂BL 1.6525 1.7193 1.6939 1.7781
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Table 6: Simulation study of estimated values of β for varying sample sizes
under different estimation methods

R1 R2 R3 R4

m=20 β̂ML 2.7385 2.5188 2.5785 2.6505
β̂BS 1.6956 1.5711 1.6714 1.7423
β̂BL 1.6902 1.5666 1.6666 1.7369

m=30 β̂ML 2.4031 2.4664 2.3547 2.3168
β̂BS 1.7898 1.8201 1.831 1.7793
β̂BL 1.7861 1.8164 1.8273 1.7757

m=32 β̂ML 2.3483 2.4667 2.3656 2.3701
β̂BS 1.8391 1.8957 1.8581 1.8
β̂BL 1.8357 1.8921 1.8546 1.7965

m=40 β̂ML 2.159 2.2993 2.214 2.3785
β̂BS 1.7642 1.879 1.8202 1.9276
β̂BL 1.7615 1.8761 1.8174 1.9246

21



Table 7: Estimated values of survival and hazard rate functions at specific
time t = 1 when true values of parameters considered θ = 2 & β = 2

m RS R̂ML R̂BS R̂BL ĥML ĥBS ĥBL

20 R1 0.9432 0.8463 0.8456 0.473 0.5767 0.5765
R2 0.9664 0.8703 0.8696 0.297 0.4781 0.4785
R3 0.9588 0.8636 0.8629 0.3532 0.5258 0.5261
R4 0.9323 0.84 0.8393 0.5185 0.6081 0.6079

30 R1 0.9088 0.8264 0.8257 0.5777 0.6585 0.6585
R2 0.9408 0.8559 0.8553 0.4387 0.5936 0.5942
R3 0.9095 0.8288 0.8281 0.5629 0.6675 0.6679
R4 0.8998 0.8198 0.8192 0.5935 0.6703 0.6704

32 R1 0.9073 0.8281 0.8275 0.5708 0.6722 0.6725
R2 0.9255 0.8445 0.8438 0.5157 0.6498 0.6503
R3 0.9068 0.8277 0.8271 0.5768 0.6802 0.6805
R4 0.9049 0.824 0.8234 0.5859 0.668 0.6682

40 R1 0.8821 0.809 0.8084 0.6168 0.6895 0.6898
R2 0.8959 0.8214 0.8208 0.6044 0.7038 0.7042
R3 0.891 0.8168 0.8162 0.6003 0.6929 0.6933
R4 0.9063 0.8316 0.831 0.5823 0.6953 0.6958
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Table 8: Risk of the estimated values for the parameters θ & β under differ-
ent estimation methods when their values are θ = 2 & β = 2

m RS risk(θ̂ML) risk(θ̂BS) risk(θ̂BL) risk(β̂ML) risk(β̂BS) risk(β̂BL)

20 R1 1.2831 0.0551 0.0003 0.7833 0.132 0.0007
R2 2.6207 0.0424 0.0002 0.4964 0.2356 0.0012
R3 2.0357 0.0468 0.0002 0.5653 0.1625 0.0008
R4 0.8551 0.0673 0.0003 0.6019 0.1057 0.0005

30 R1 0.3226 0.0906 0.0005 0.2521 0.0759 0.0004
R2 0.9662 0.0438 0.0002 0.3484 0.0814 0.0004
R3 0.3582 0.0945 0.0005 0.2091 0.0647 0.0003
R4 0.2453 0.1122 0.0006 0.185 0.0816 0.0004

32 R1 0.3146 0.0916 0.0005 0.1971 0.059 0.0003
R2 0.5852 0.0623 0.0003 0.3152 0.0532 0.0003
R3 0.318 0.0957 0.0005 0.2143 0.0567 0.0003
R4 0.2893 0.0988 0.0005 0.2212 0.0716 0.0004

40 R1 0.1062 0.1382 0.0007 0.0751 0.0805 0.0004
R2 0.1979 0.1065 0.0005 0.1527 0.0474 0.0002
R3 0.1597 0.1197 0.0006 0.0999 0.0599 0.0003
R4 0.2713 0.0784 0.0004 0.2058 0.039 0.0002
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Table 9: CIs for estimated values of θ under different estimation methods

m RS Boot-p Boot-t HPD

20 R1 (2.8578, 11.1488) (2.6288, 6.1536) (1.3261, 2.4467)
R2 (3.7472, 18.0335) (3.7067, 10.1156) (1.4354, 2.6929)
R3 (3.4901, 13.8735) (3.3244, 8.5) (1.3958, 2.6221)
R4 (2.7133, 8.034) (2.366, 5.0645) (1.2945, 2.3969)

30 R1 (2.0618, 5.1748) (1.8705, 3.9422) (1.2531, 2.2653)
R2 (2.7957, 8.0421) (2.6447, 6.0912) (1.3757, 2.5225)
R3 (2.2813, 4.6984) (1.8374, 3.4712) (1.2465, 2.3016)
R4 (2.042, 4.5805) (1.7029, 3.3854) (1.22, 2.2205)

32 R1 (2.1664, 4.5572) (1.824, 3.4918) (1.2536, 2.2879)
R2 (2.4742, 5.755) (2.2791, 4.7645) (1.3244, 2.4148)
R3 (2.2539, 4.5638) (1.858, 3.504) (1.2478, 2.2867)
R4 (1.9942, 4.8306) (1.8056, 3.7792) (1.2455, 2.2427)

40 R1 (1.7312, 3.5425) (1.5848, 3.0472) (1.1956, 2.1346)
R2 (1.9907, 3.9013) (1.7448, 3.2471) (1.235, 2.2288)
R3 (1.9355, 3.6744) (1.6093, 2.973) (1.2116, 2.1957)
R4 (2.0731, 4.3427) (1.9664, 3.8268) (1.2814, 2.3017)
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Table 10: CIs for estimated values of β under different estimation methods

m RS Boot-p Boot-t HPD

20 R1 (3.1851, 6.4733) (2.077, 4.0564) (1.0733, 2.3297)
R2 (2.3496, 4.8528) (1.9902, 3.9582) (1.0065, 2.1425)
R3 (2.218, 4.4424) (2.379, 4.5623) (1.0882, 2.2594)
R4 (2.6085, 5.1819) (2.2945, 4.4122) (1.126, 2.3731)

30 R1 (2.8568, 4.9921) (1.6458, 2.892) (1.2644, 2.3197)
R2 (2.4732, 4.1915) (2.1725, 3.5995) (1.2992, 2.3392)
R3 (1.6349, 2.9493) (2.5221, 4.5128) (1.3172, 2.349)
R4 (2.3164, 3.9038) (1.7931, 3.0022) (1.2702, 2.2951)

32 R1 (1.9933, 3.2423) (2.3841, 3.8558) (1.3405, 2.3472)
R2 (2.2417, 3.4711) (2.6081, 3.9883) (1.3807, 2.4114)
R3 (1.7294, 2.9539) (2.5262, 4.2396) (1.3539, 2.3694)
R4 (2.728, 4.793) (1.5904, 2.7698) (1.2914, 2.3134)

40 R1 (2.3153, 3.6335) (1.4744, 2.3389) (1.3206, 2.2107)
R2 (1.9488, 2.9533) (2.2802, 3.448) (1.4162, 2.3473)
R3 (1.7508, 2.7971) (2.0975, 3.3296) (1.3706, 2.2749)
R4 (2.1957, 3.3477) (2.3853, 3.5826) (1.4553, 2.4036)
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Table 11: Estimates of parameters (θ ,β ) for various choice of parameters
under different estimation methods for m = 32 failures

θ β RS θ̂ML θ̂BS θ̂BL β̂ML β̂BS β̂BL

1.5 2 R1 1.688 1.4188 1.4165 0.1152 0.0381 0.0002
2 R2 1.8131 1.4962 1.4936 0.2111 0.0397 0.0002
2 R3 1.6819 1.412 1.4097 0.1115 0.0382 0.0002
2 R4 1.6885 1.4149 1.4127 0.119 0.0376 0.0002

3 2 R1 3.8175 2.2328 2.2261 1.2067 0.6187 0.0031
2 R2 4.2918 2.3469 2.3394 2.4905 0.4562 0.0023
2 R3 3.8472 2.2421 2.2354 1.3377 0.6097 0.003
2 R4 3.7751 2.1794 2.173 1.1533 0.6995 0.0034

2 0.5 R1 2.3617 1.8129 1.809 0.3032 0.0889 0.0004
0.5 R2 2.562 1.9253 1.9209 0.5415 0.0703 0.0003
0.5 R3 2.3462 1.7956 1.7916 0.3092 0.1006 0.0005
0.5 R4 2.3561 1.8219 1.8181 0.2799 0.0775 0.0004

2 1.5 R1 2.3704 1.7738 1.7701 0.3032 0.0868 0.0004
1.5 R2 2.5964 1.8849 1.8807 0.5864 0.0609 0.0003
1.5 R3 2.3752 1.7754 1.7715 0.3486 0.1012 0.0005
1.5 R4 2.3506 1.7606 1.7571 0.3006 0.0946 0.0005
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Table 12: Risk of the estimated values for the parameters (θ , β ) for various
choice of parameters under different estimation methods for m = 32 failures

θ β RS risk(θ̂ML) risk(θ̂BS) risk(θ̂BL) risk(β̂ML) risk(β̂BS) risk(β̂BL)

1.5 2 R1 0.1152 0.0381 0.0002 0.1984 0.0463 0.0002
2 R2 0.2111 0.0397 0.0002 0.2992 0.0477 0.0002
2 R3 0.1115 0.0382 0.0002 0.1912 0.0507 0.0003
2 R4 0.119 0.0376 0.0002 0.2282 0.051 0.0003

3 2 R1 1.2067 0.6187 0.0031 0.2047 0.129 0.0006
2 R2 2.4905 0.4562 0.0023 0.3155 0.1182 0.0006
2 R3 1.3377 0.6097 0.003 0.1924 0.1377 0.0007
2 R4 1.1533 0.6995 0.0034 0.2064 0.1716 0.0009

2 0.5 R1 0.3032 0.0889 0.0004 0.0119 0.0045 2.00E-05
0.5 R2 0.5415 0.0703 0.0003 0.0197 0.0067 3.00E-05
0.5 R3 0.3092 0.1006 0.0005 0.0121 0.0048 2.00E-05
0.5 R4 0.2799 0.0775 0.0004 0.0133 0.0041 2.00E-05

2 1.5 R1 0.3032 0.0868 0.0004 0.1142 0.0262 0.0001
1.5 R2 0.5864 0.0609 0.0003 0.1638 0.027 0.0001
1.5 R3 0.3486 0.1012 0.0005 0.1198 0.0272 0.0001
1.5 R4 0.3006 0.0946 0.0005 0.1189 0.0296 0.0001
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Table 13: Estimated values of survival and hazard rate functions at specific
time t = 1 for various choice of parameters and for m = 32 failures

θ β RS R̂ML R̂BS R̂BL ĥML ĥBS ĥBL

1.5 2 R1 0.8151 0.758 0.7574 0.9002 0.8769 0.8764
2 R2 0.8369 0.776 0.7754 0.8692 0.8645 0.8642
2 R3 0.814 0.7563 0.7558 0.8961 0.8778 0.8773
2 R4 0.8152 0.7571 0.7565 0.9094 0.8629 0.8623

3 2 R1 0.978 0.8928 0.8921 0.2021 0.4485 0.4498
2 R2 0.9863 0.9043 0.9036 0.1465 0.4209 0.4223
2 R3 0.9787 0.8938 0.8931 0.1954 0.4425 0.4437
2 R4 0.9771 0.8869 0.8862 0.2081 0.4475 0.4487

2 0.5 R1 0.9057 0.8368 0.8362 0.1435 0.1877 0.188
0.5 R2 0.9228 0.8542 0.8535 0.1319 0.1812 0.1816
0.5 R3 0.9043 0.834 0.8333 0.1448 0.1909 0.1912
0.5 R4 0.9052 0.8383 0.8377 0.1453 0.1834 0.1838

2 1.5 R1 0.9066 0.8303 0.8297 0.4314 0.5262 0.5267
1.5 R2 0.9255 0.8482 0.8475 0.3841 0.5006 0.5013
1.5 R3 0.907 0.8306 0.8299 0.4314 0.5286 0.5291
1.5 R4 0.9047 0.8281 0.8275 0.4387 0.5169 0.5172
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