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Abstract.	The Gumbel distribution is one of the most used models to carry out 

risk analysis in extreme events, in reliability tests, and in life expectancy 

experiments. In this article, we extend the general statistics for goodness-of-fit 

tests proposed by Noughabi (2019), specifically focusing on the Gumbel 

distribution. Our approach utilizes a new estimate of Kullback-Leibler 

information to develop a goodness-of-fit test. The properties of the test statistic 

are presented, and the unknown parameters of the Gumbel distribution are 

estimated by the maximum likelihood method. Critical points of the proposed 

test statistic are obtained through Monte Carlo simulation. A simulation study 

is conducted to evaluate the power of the test and compare its performance 

with existing tests. Finally, two real data examples are presented and analyzed. 

	
Keywords.	Gumbel distribution, Kullback-Leibler information, Goodness-of-

fit tests, Test power, Monte Carlo simulation. 

 

1.  Introduction 
The Gumbel distribution is a popular, asymmetric, extreme value distribution (EVD), 

used to model maximums and minimums. For example, the EVD Type I has been used to 

predict earthquakes, floods, and other natural disasters, as well as modeling operational 

risk in risk management and the life of products that quickly wear out after a certain age.  
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Various applications based on the Gumbel distribution assumption are widely addressed 

in different fields of science. (e.g., Kotz and Nadarajah, 2000; Koutsoyiannis, 2003; 

Aryal and Tsokos, 2009; Yolanda et al., 2019; Eledum and Mohammed 2022; 

Osatohanmwen et al. (2022); and Krishna and Goel (2023)).  

However, misspecification of the Gumbel distribution can have serious consequences, 

particularly when modeling extreme events. Incorrectly assuming a Gumbel distribution 

could lead to: 

• Underestimation of risk: For instance, in risk management, using a Gumbel 

distribution when another skewed distribution is more appropriate could result in 

underestimating the likelihood of extreme events, leading to inadequate risk mitigation 

strategies. 

• Inaccurate predictions: When modeling phenomena like natural disasters, using the 

wrong distribution could produce inaccurate predictions, impacting disaster preparedness 

and response efforts. 

Therefore, finding a powerful goodness-of-fit test for the Gumbel distribution is crucial 

to ensure accurate model selection and reliable analysis. This is especially important 

when dealing with extreme events and other critical applications where misspecification 

can have significant consequences. 

In this article, we investigate different goodness of fit tests for the Gumbel distribution 

based on the empirical distribution function.  

Assuming that  is the sample from a distribution , we wish to assess whether 

the unknown  can be satisfactorily approximated by a Gumbel model . 

Goodness-of-fit (GOF) tests are designed to measure how well a proposed model fits the 

observed sample data. There are various classes of GOF tests, each based on different 

principles and measures of fit. One prominent class consists of tests based on the distance 

between the empirical and hypothesized distribution functions. These tests, such as the 

Cramer-von Mises ( ), Kolmogorov-Smirnov ( ), Kuiper (  ), Watson ( ), and 

Anderson-Darling ( ), assess how well the hypothesized distribution function aligns 

with the empirical distribution function derived from the observed data. For this study, 

we focus on this class of GOF tests because:  

• They are widely used and well-established. 
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• They provide a direct measure of the discrepancy between the proposed model and the 

observed data. 

• They have robust theoretical properties and have been extensively studied in the 

literature. 

For more details about these tests, see D’Agostino and Stephens (1986), Lemeshko et al. 

(2007), and Lemeshko and Gorbunova (2013). 

The Kullback-Leibler (KL) discrimination has been widely studied in the literature as a 

central index for measuring quantitative similarity between two probability distributions. 

The KL discrimination of  from  is defined by  

 

Note that  if and only if  with probability 1.  

Recently, Alizadeh Noughabi (2019) proposed a new estimate of the Kullback-Leibler 

discrimination and then constructed a test statistic for testing the validity of a model. His 

test statistic is 

 

where  is the distribution function of g,  is a positive integer, , and 

 are the order statistics and  if ,  if 

. Here,  is a model parameter which is usually unknown, and  is a reasonable 

equivariant estimate of . 

Alizadeh Noughabi (2019) showed that the test statistic is non-negative just like the 

Kullback-Leibler divergence, i.e.,  Also, the test based on  is consistent. 

Then, He proposed tests for normal, exponential, Laplace and Weibull distributions and 

compared the power of these tests with the other existing tests and showed that his test 

has a good power against different alternatives. In this paper, we apply the Alizadeh 

Noughabi’s test statistic and introduce a goodness of fit test for the Gumbel distribution. 
 

In section 2, we express some properties of the Gumbel distribution and then propose a 

goodness of fit test statistic for the Gumbel distribution based on an estimate of Kullback-

Leibler divergence. In Section 3, the critical points and the power values of the proposed 
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test are computed by Monte Carlo simulations and then compared with some known 

competing tests. Section 4 contains two real examples for illustrative purpose. The 

following section contains a brief conclusion. 

 

2.  The Gumbel Distribution and Test Statistic 
This section begins by presenting key properties of the Gumbel distribution. We then 

extend the general statistics for goodness-of-fit tests proposed by Noughabi (2019), 

tailoring this framework to specifically address the Gumbel distribution.  
 

2.1 The Gumbel distribution 
The probability density function of the Gumbel distribution has the following form. 

 

where  and  are the location and scale parameters, respectively. The cumulative 

distribution function can be obtained as 

 

The mean and variance of the distribution are  

  and   , 

where  is the Euler constant.  
If , then  is called the standard Gumbel random variable with the 

following density. 

 

Suppose that  are a random sample from a Gumbel distribution. The 

maximum likelihood estimates for the Gumbel distribution are the solution to the 

following simultaneous equations  
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It is clear that the MLEs of the parameters cannot be obtained explicitly. Therefore, these 

equations need to be solved numerically and this is typically accomplished by using 

statistical software packages. We will use the MLEs to computation of the proposed test 

statistic. 

2.2 The proposed test statistic 

Given a random sample  from a continuous probability distribution  with a 

density function , the hypothesis of interest is  

 

where  and  are specified or unspecified and . The alternative to  is  

 

We extend the following test statistic for test of the Gumbel distribution.  

 

where  is the Gumbel distribution function and  and  are the maximum likelihood 

estimates of the unknown parameters.  

We reject the null hypothesis for large values of the test statistic. According to Alizadeh 

Noughabi (2019), the test statistic is non-negative, i.e., , and also the test based 

on  is consistent. 

Remark 1. Clearly, the proposed test statistic is invariant to transformations of location-

scale and also the parameter space is transitive. Therefore, the distribution of the 

proposed test statistic  does not depend on the unknown parameters  and .  We 

will use this property to obtain the critical values of the test statistic.  

 

3.  Critical Points and Power Study 

At the significance level , we reject   if the value of the test statistic is greater than 

, where the critical value  is obtained by the quantile of the 

distribution of the test statistic under the null hypothesis .  
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Since deriving the exact distribution of the proposed test statistic is complicated, we 

study the null distribution of the proposed test statistic via Monte Carlo simulations using 

100,000 runs for each sample size.  

We use the following steps to determine the critical values of the proposed test statistics: 

1) Generate a sample  with size  from the standard Gumbel distribution; 

2) Calculate the proposed statistics based on the sample ; 
3) Repeat Steps 1–2 a large number of times and then determine the (1−α)th quantile 

of the test statistics. 
The obtained critical values for the proposed test statistics and sample sizes  

are presented in Table 1. 

 
Table 1. Critical values of the proposed test statistic for  

           
 1 2 3 4 5 6 7 8 9 10 

5 1.0889 0.6657         
10 0.7842 0.5222 0.4558 0.4560 0.5025      
15 0.6535 0.4320 0.3820 0.3648 0.3673 0.3930 0.4299    
20 0.5743 0.3763 0.3266 0.3115 0.3127 0.3189 0.3350 0.3605 0.3904 0.4191 
25 0.5262 0.3397 0.2908 0.2765 0.2742 0.2797 0.2876 0.3009 0.3174 0.3402 
30 0.4962 0.3115 0.2629 0.2477 0.2449 0.2490 0.2553 0.2651 0.2755 0.2895 
40 0.4579 0.2774 0.2275 0.2103 0.2056 0.2065 0.2116 0.2182 0.2255 0.2339 
50 0.4298 0.2557 0.2056 0.1870 0.1799 0.1792 0.1817 0.1859 0.1917 0.1986 
 

Based on Remark 1, we can use any value of the parameters to obtain the critical values 

because the distribution of the test statistic does not depend on the unknown parameters 

 and . Here, we considered   and . 

The power values of the proposed test against various alternatives are computed by 

Monte Carlo simulations. We compare the power values of the proposed test with the 

existing tests. In our power comparisons, we consider the well-known tests which are 

applied in practice and statistical software. The test statistics of these tests are briefly 

described as follows. For more details about these tests, on can see D’Agostino and 

Stephens (1986).  

Let  are the order statistics based on the random sample .  
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1. The Cramer-von Mises statistic (1931): A quadratic statistic based on the 

integrated squared difference between the empirical and hypothesized cumulative 

distribution functions (CDFs). 

 

2. The Watson statistic (1961): A quadratic statistic similar to the Cramer-von Mises 

test but with a modified weighting function to account for the circularity of the 

data. 

 

where  is the mean of . 

 

3. The Kolmogorov-Smirnov statistic (1933): A supremum statistic based on the 

maximum absolute difference between the empirical and hypothesized CDFs. 

. 

where  

 

4. The Kuiper statistic (1960): A supremum statistic similar to the Kolmogorov-

Smirnov test but accounts for the cyclical nature of the data. 

. 

5. The Anderson-Darling statistic (1952): A quadratic statistic that gives more 

weight to the tails of the distribution, making it particularly sensitive to deviations 

in the tails. 

 

where  is the Gumbel distribution function. 
 

The following alternatives are considered in power comparison. The considered 

alternatives can divide into two groups, symmetric alternatives and asymmetric 

alternatives.  
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Group I: Symmetric alternatives: 

• the standard normal distribution, denoted by , 
• the student’s  distribution with 10 degrees of freedom, denoted by , 
• the student’s  distribution with 3 degrees of freedom, denoted by , 
• the standard logistic distribution, denoted by , 
• the standard Laplace distribution, denoted by , 
• the standard Cauchy distribution, denoted by , 
• the uniform distribution, denoted by , 
• the Beta distribution, denoted by , 

 
Group II: asymmetric alternatives: 

• the exponential, ,  
• the Gamma,  and , 
• the lognormal, , 
• the Weibull,  and , 
• the inverse Gaussian, ,  and , 
• the skew normal distribution, ,  and , 
• the skew Laplace distribution, ,  and . 

 

Under above alternatives the power values of the tests are obtained by means of Monte 

Carlo simulations. Under each alternative 100,000 samples of size 10, 20, 30 and 50 are 

generated and the test statistics are calculated. Then power value of the corresponding 

test is computed by the frequency of the event ‘‘the statistic is in the critical region’’. The 

power values of the tests at significance level  are presented in Tables 2 and 3. 

For each sample size and alternative, the bold type in these tables indicates the tests 
achieving the maximal power. 
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Table 2.  Empirical powers of the tests against symmetric distribution at significance level 5%. 
        

 10 0.1090 0.0929 0.1002 0.1088 0.1008 0.1859 
 20 0.2092 0.1620 0.1821 0.2039 0.2187 0.3899 
 30 0.3026 0.2289 0.2592 0.2895 0.3340 0.5252 
 50 0.4965 0.3694 0.4263 0.4717 0.5551 0.7037 

 10 0.1330 0.1113 0.1217 0.1319 0.1254 0.2138 
 20 0.2690 0.2094 0.2401 0.2643 0.2801 0.4378 
 30 0.3907 0.3033 0.3467 0.3819 0.4202 0.5719 
 50 0.6057 0.4771 0.5442 0.5912 0.6485 0.7511 

 10 0.2352 0.2000 0.2167 0.2334 0.2301 0.2893 
 20 0.4572 0.3848 0.4312 0.4570 0.4653 0.5322 
 30 0.6220 0.5391 0.5908 0.6218 0.6376 0.6795 
 50 0.8252 0.7505 0.7990 0.8262 0.8392 0.8503 

 10 0.5971 0.5617 0.5759 0.5934 0.5931 0.4526 
 20 0.8708 0.8350 0.8560 0.8701 0.8703 0.7591 
 30 0.9612 0.9442 0.9546 0.9611 0.9617 0.8837 
 50 0.9971 0.9946 0.9960 0.9971 0.9973 0.8094 

 10 0.1439 0.1197 0.1300 0.1427 0.1367 0.2258 
 20 0.2978 0.2344 0.2681 0.2939 0.3098 0.4564 
 30 0.4317 0.3382 0.3856 0.4242 0.4586 0.5941 
 50 0.6512 0.5297 0.5945 0.6409 0.6879 0.7739 

 10 0.2243 0.1900 0.2037 0.2228 0.2139 0.2819 
 20 0.4676 0.3922 0.4344 0.4691 0.4670 0.5599 
 30 0.6456 0.5592 0.6061 0.6464 0.6498 0.7313 
 50 0.8602 0.7902 0.8289 0.8616 0.8623 0.9080 

 10 0.1244 0.0995 0.1233 0.1295 0.1177 0.1683 
 20 0.2454 0.1822 0.2270 0.2483 0.2654 0.2888 
 30 0.3787 0.2732 0.3418 0.3745 0.4422 0.3855 
 50 0.6553 0.4776 0.5991 0.6415 0.7616 0.5662 

 10 0.0903 0.0787 0.0854 0.0920 0.0805 0.1522 
 20 0.1578 0.1315 0.1367 0.1531 0.1595 0.2975 
 30 0.2319 0.1854 0.1912 0.2169 0.2544 0.4102 
 50 0.4071 0.3036 0.3345 0.3724 0.4739 0.5816 
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Table 3. Empirical powers of the tests against asymmetric distribution at significance level 5%. 
        

 10 0.1585 0.1396 0.1280 0.1482 0.1919 0.1304 
 20 0.3047 0.2439 0.2255 0.2733 0.3769 0.3324 
 30 0.4446 0.3515 0.3296 0.3963 0.5506 0.5608 
 50 0.7020 0.5596 0.5651 0.6428 0.8132 0.8637 

 10 0.4350 0.3769 0.3593 0.4114 0.5075 0.3986 
 20 0.7764 0.6624 0.6878 0.7361 0.8513 0.7915 
 30 0.9285 0.8448 0.8875 0.9019 0.9680 0.8931 
 50 0.9955 0.9770 0.9925 0.9915 0.9993 0.9175 

 10 0.0630 0.0616 0.0593 0.0617 0.0712 0.0680 
 20 0.0853 0.0752 0.0737 0.0804 0.0992 0.0951 
 30 0.1106 0.0960 0.0911 0.1042 0.1334 0.1334 
 50 0.1653 0.1318 0.1310 0.1534 0.2053 0.2245 

 10 0.2850 0.2621 0.2317 0.2626 0.3332 0.1298 
 20 0.5219 0.4481 0.3995 0.4647 0.5962 0.3214 
 30 0.7043 0.6130 0.5594 0.6349 0.7803 0.5208 
 50 0.9068 0.8313 0.8022 0.8547 0.9496 0.7455 

 10 0.6997 0.6363 0.6264 0.6745 0.7586 0.5051 
 20 0.9600 0.9144 0.9344 0.9453 0.9790 0.6488 
 30 0.9965 0.9857 0.9936 0.9942 0.9989 0.5775 
 50 1.0000 0.9997 1.0000 1.0000 1.0000 0.4524 

 10 0.0484 0.0468 0.0510 0.0504 0.0444 0.0622 
 20 0.0559 0.0548 0.0583 0.0582 0.0509 0.0799 
 30 0.0620 0.0613 0.0626 0.0632 0.0582 0.0998 
 50 0.0808 0.0751 0.0737 0.0807 0.0768 0.1489 

 10 0.4135 0.3741 0.3390 0.3848 0.4731 0.1995 
 20 0.7340 0.6469 0.6140 0.6795 0.7997 0.5164 
 30 0.8957 0.8224 0.8055 0.8535 0.9368 0.6944 
 50 0.9890 0.9648 0.9654 0.9774 0.9960 0.7622 

 10 0.2314 0.2116 0.1835 0.2121 0.2760 0.1171 
 20 0.4313 0.3670 0.3196 0.3789 0.5062 0.2920 
 30 0.5162 0.5203 0.4590 0.5434 0.7024 0.4963 
 50 0.8494 0.7469 0.7020 0.7829 0.9115 0.7889 

 10 0.1102 0.1047 0.0919 0.1017 0.1316 0.0731 
 20 0.1841 0.1617 0.1333 0.1594 0.2246 0.1262 
 30 0.2567 0.2178 0.1761 0.2161 0.3186 0.1963 
 50 0.4218 0.3375 0.2800 0.3542 0.5105 0.3539 

 10 0.1057 0.0900 0.0972 0.1053 0.0978 0.0684 
 20 0.2003 0.1559 0.1740 0.1955 0.2092 0.1275 
 30 0.2895 0.2208 0.2492 0.2773 0.3219 0.2126 
 50 0.4760 0.3544 0.4074 0.4524 0.5337 0.4019 
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Table 3. Continued. 
        

 10 0.0644 0.0577 0.0631 0.0649 0.0587 0.0553 
 20 0.0887 0.0757 0.0831 0.0888 0.0874 0.0685 
 30 0.1118 0.0946 0.0998 0.1091 0.1194 0.0881 
 50 0.1650 0.1284 0.1392 0.1574 0.1849 0.1286 

 10 0.0507 0.0487 0.0514 0.0518 0.0476 0.0536 
 20 0.0565 0.0526 0.0583 0.0586 0.0532 0.0598 
 30 0.0582 0.0558 0.0594 0.0588 0.0589 0.0689 
 50 0.0679 0.0629 0.0660 0.0678 0.0703 0.0817 

 10 0.4059 0.3275 0.3714 0.4012 0.3927 0.1867 
 20 0.7535 0.6448 0.7099 0.7473 0.7576 0.5536 
 30 0.9087 0.8329 0.8785 0.9035 0.9147 0.7880 
 50 0.9904 0.9703 0.9831 0.9892 0.9919 0.9609 

 10 0.1092 0.0991 0.1003 0.1071 0.1116 0.0469 
 20 0.1936 0.1646 0.1821 0.1945 0.1997 0.0652 
 30 0.2712 0.2292 0.2569 0.2737 0.2839 0.0953 
 50 0.4254 0.3548 0.4055 0.4343 0.4395 0.1646 

 10 0.0978 0.0929 0.0863 0.0933 0.1083 0.0527 
 20 0.1533 0.1359 0.1313 0.1458 0.1679 0.0620 
 30 0.2034 0.1771 0.1736 0.1924 0.2231 0.0729 
 50 0.3158 0.2602 0.2723 0.3044 0.3358 0.1012 

 
 

The power of the proposed test statistic depends on the alternative distribution and the 

window size. It is not possible to have the best value of  which attains the maximum 

powers for all alternatives. Therefore, based on a broad Monte Carlo analysis, we 

determine the optimal to be the values of  which attain good (not best) powers for 

symmetric of asymmetric alternative distributions. For a given , the value of  can be 

obtained from heuristic formula  and , for symmetric of 

asymmetric alternatives, respectively. Here, [x] means the integer part of x. For example, 

when , we recommend  and , against asymmetric and symmetric 

alternatives, respectively, as the optimal values which the proposed test attains good (not 

best) power values. We observe that the optimal  increases as  increases. 

From Table 2, the symmetric alternatives, it is seen that the proposed test based on  

statistic has the most power (with the exception of the case where Cauchy was the 

alternative). The differences of power values between the test  and the other tests 
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are substantial. Therefore, against symmetric alternatives, the proposed test based on 

 statistic should be recommended in practice. 

In Table 3, the asymmetric alternatives, it is evident that no single test can be said to 

perform the best against all alternatives. However, the test  has the most power against 

mostly alternatives.  

Our analysis indicates that the  and  tests exhibit the highest power against their 

respective types of alternatives:  for symmetric and  for asymmetric 

distributions. Overall, both tests demonstrate robust performance against a range of 

alternatives, making them reliable tools for practical applications. 

 

4  Applications 
In this section, we examine two real-world data set to test the goodness-of-fit for the 

Gumbel distribution when a sample is available. 
 

Example 1. The first real data set consists of 30 observations of time between failures for 

the repairable item. It was introduced by Murthy et al. (2004) and then applied by 

Hossam et al. (2022). The real data set is as follows. 
 

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 
0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. 
 

In Figure 1, we present a graphical comparison of the observed data and the Gumbel 

distribution using an empirical distribution function (EDF) plot. Additionally, we provide 

a quantile-quantile (Q-Q) plot to visually assess the agreement between the two 

distributions. 

The proposed procedure can be used to investigate whether the data come from a Gumbel 

distribution. The value of the considered test statistics is computed and also the critical 

value of each test at the significance level 0.05 is obtained by Monte Carlo simulation. 

Results are summarized in Table 4. Also, the values of estimated parameters are  

and . 
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Figure 1. EDF plot and Q-Q plot of the observed data to the Gumbel distribution. 

 

 
Table 4. The value of the test statistics and critical values at 5% level. 
Test Value of the test statistic Critical value Decision 

 0.0335 0.1226 Not Reject  
 0.1023 0.1566 Not Reject  
 0.1589 0.2641 Not Reject  
 0.0295 0.1165 Not Reject  
 0.2748 0.7461 Not Reject  

 0.1062 0.2629 Not Reject  
 

Based on the considered tests, we can find that the values of these test statistics are 

smaller than the corresponding critical values and consequently the Gumbel hypothesis is 

not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not 

have sufficient evidence to reject the Gumbel distribution as the underlying distribution 

of these data. 

 

Example 2. We consider the Covid-19 data set presented by Hassan et al. (2021). Covid-

19 data belong to Italy of 111 days that are recorded from 1 April to 20 July 2020. This 

data formed of daily new deaths divided by daily new cases. It is available at 

https://covid19.who.int. The data set is as follows. 
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0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 
0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 
0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597, 0.2195, 
0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 0.2148, 
0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686, 
0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792, 0.3515, 
0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071, 0.1041, 
0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894, 
0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 
0.0476, 0.0562, 0.0138. 
 
Figure 2 includes both an EDF plot and a Q-Q plot, visually comparing the observed data 

to the Gumbel distribution. 

 

 
Figure 2. EDF plot and Q-Q plot of the observed data to the Gumbel distribution. 

 

For this example, the values of estimated parameters are obtained as  and 

. Applying the proposed procedure to this data set the value of the test statistic is 

obtained as 0.0967 and also the critical value of the test at the significance level 0.05 is 

obtained as 0.1146. The other procedures are also used to investigate whether this data 

come from a Gumbel distribution. The value of each test statistic is computed and also 

the critical value of each test is obtained by Monte Carlo simulation. Results are 

summarized in Table 5. 
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Table 5. The value of the test statistics and critical values at 5% level. 
Test Value of the test statistic Critical value Decision 

 0.1768 0.1235 Reject  
 0.0816 0.0835 Not reject  
 0.1401 0.1408 Not reject  
 0.1632 0.1174 Reject  
 1.1045 0.7552 Reject  

 0.0967 0.1146 Not Reject  
 

Based on the tests  and , we can find that the values of these test statistics are 

smaller than the corresponding critical values and consequently the Gumbel hypothesis is 

not rejected at the significance level of 0.05. Therefore, based on our analysis, we do not 

have sufficient evidence to reject the Gumbel distribution as the underlying distribution 

of these data. Based on the other tests, since the values of the test statistics are larger than 

the corresponding critical values, the Gumbel hypothesis is rejected at significance level 

0.05. 

Based on our simulations from Tables 2 and 3, we concluded that generally the proposed 

test  and  are powerful against symmetric and asymmetric alternatives, 

respectively. Therefore, in this example, we prefer the proposed test  over the other 

tests. Consequently, we choose this test and make a decision. From the results of Table 6, 

the test  reject the null hypothesis and we can not conclude that these data follow a 

Gumbel distribution.  

 

5.  Conclusions  
In this paper, we have extended a goodness-of-fit test for the Gumbel distribution based 

on an estimate of Kullback-Leibler information. We have examined the properties of the 

proposed test, computed critical values, and evaluated its power. While our findings 

demonstrate the test’s effectiveness against symmetric alternatives, its true value lies in 

distinguishing the Gumbel distribution from other skewed distributions, particularly 

relevant in domains like extreme event modeling and survival analysis where 

misspecifying a skewed distribution as a Gumbel could lead to underestimation of risk or 

inaccurate predictions. 
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The current study focuses on complete data sets, but acknowledging the prevalence of 

type II censoring in survival analysis, future research should investigate the applicability 

of our proposed test in the presence of censoring. This extension would be particularly 

valuable for analyzing survival data and evaluating the fit of the Gumbel distribution in 

settings where complete data is not available. 

Our findings underscore the potential of our proposed test in various domains. Future 

research should include a more comprehensive comparison of our test with existing 

methods, particularly the Anderson-Darling test, to gain a clearer understanding of its 

advantages and limitations in both complete and censored data settings.  

Finally, we have presented two real data sets to illustrate how the proposed test can be 

applied to assess the goodness-of-fit of the Gumbel distribution when a complete sample 

is available. This demonstrates the potential usefulness of our test in various domains, 

and further research will explore its applicability to censored data settings. 
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