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STATISTICAL STUDIES OF THE BETA GUMBEL
DISTRIBUTION: ESTIMATION OF EXTREME LEVELS OF

PRECIPITATION

Fredrik Jonsson, Jesper Rydén1
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Abstract Generalisations of common families of distributions are of interest in their own
right as well as for applications. A Beta Gumbel distribution has earlier been introduced
as a generalisation of the Gumbel distribution, suggesting that this would provide a more
flexible tail behaviour compared to the Gumbel distribution. Through simulation studies,
the distributions are here compared closer, e.g. with respect to estimation of quantiles.
Moreover, real data in the form of extreme rainfall are analysed and assessment is made
whether the proposed Beta Gumbel distribution can be superior to the standard distribu-
tions with respect to modelling tail behaviour. Estimates of return values corresponding
to return periods of lengths from 100 up to 100 000 years are found, as well as the related
confidence intervals. The distribution considered does indeed provide more flexibility, but
to the price of computational issues.

Keywords: Beta distribution, Beta Gumbel distribution, Gumbel distribution, Quantiles,
Rainfall.

1. INTRODUCTION

Statistical modelling of extreme values is of importance in many fields of science

and technology, e.g. in environmental applications to yearly maximal tempera-

tures, river discharges etc. A limiting distribution for the maximum of many of the

most common families of distributions is the Gumbel distribution, which is a spe-

cial case of the so-called Generalised Extreme Value (GEV) distribution. In many

typical applications, the tail behaviour is of particular interest, for instance when

estimating quantiles. Hence, flexibility is desirable, and generalisations have been

suggested, as the GEV distribution is obtained in the limit. For a practical situ-

ation with occasionally a limited amount of observations, generalisations of the

Gumbel distribution may therefore be of interest (Pinheiro and Ferrari, 2016).

Generalisation of distributions has been discussed frequently. A generalised

class of the Beta distribution was first given by Eugene, Lee and Famoye (2002),

1 Corresponding author, e-mail: jesper.ryden@math.uu.se

doi.org/10.26398/IJAS.0029-001

http://doi.org/10.26398/IJAS.0029-001


6 Jonsson, F.,  Rydén, J.

where the Beta Normal distribution was introduced as a generalisation of the Nor-

mal distribution. Compared to the classical Normal distribution, this generalisa-

tion rendered greater flexibility of the shape of the distribution. Turning to the

Gumbel distribution, Nadarajah and Kotz (2004) introduced the Beta Gumbel dis-

tribution and claimed that this allows for greater flexibility when explaining the

variability of the tail compared to the Gumbel distribution. Several mathemat-

ical properties of the distribution were presented, such as moments, asymptotic

results and estimation issues. However, no applied example was presented, and

the present article has as its main aim to further discuss the intended flexibility of

the Beta Gumbel distribution, exploring it through simulation studies. Moreover,

a case study within environmental statistics is performed: estimation of return

values for measurements of precipitation.

The paper is organised as follows. In Section 2, a brief introduction to sta-

tistical extreme-value analysis is given, including presentation of the Gumbel and

Beta Gumbel distribution. In Section 3, we review estimation issues, in particular

estimation of return levels, directly related to quantiles in the extreme-value dis-

tribution. Results from simulation studies are presented in Section 4, involving

estimation of quantiles, while a real data set with annual maximum daily rainfall

for two locations in Sweden is analysed in Section 5. Finally, conclusions are

given in Section 6.

2. EXTREME-VALUE DISTRIBUTIONS

In this section, we first review the basic assumptions and notions from classical

extreme-value theory. In light of this, the Beta Gumbel distribution is then pre-

sented.

2.1. LIMITING DISTRIBUTIONS IN EXTREME-VALUE ANALYSIS

In the classical extreme-value analysis, focus is on the quantity

Mn = max(X1, . . . ,Xn)

where X1, . . . ,Xn is a sequence of independent and identically distributed random

variables from some distribution F . Under suitable conditions, the distribution of

Mn can be approximated for large values of n. This asymptotic result, sometimes

named the extremal types theorem, states that the distribution of Mn belongs to

a single family of distributions, regardless of the unknown distribution F . See
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e.g. Coles (2001) or Beirlant et al (2004) for a thorough presentation, including

historical developments.

The extremal types theorem states that if there exist sequences of constants

{an > 0} and {bn} such that

P((Mn −bn)/an ≤ x)→ G(x) as n → ∞,

where G is a non-degenerate distribution function, then the distribution G be-

longs to one of the following three families of distributions: Gumbel, Fréchet and

Weibull, respectively. These are occasionally called extreme-value distribution of

type I, II and III, respectively. These families of distributions can be combined

into one single family called the Generalised Extreme Value (GEV) distribution.

The distribution function of the GEV distribution has the following form:

G(x) = exp

{
−
[

1+ξ
(
−x−µ

σ

)]−1/ξ
}
, (1)

where x is defined for 1+ξ (x−µ)/σ > 0, where −∞ < µ < ∞, σ > 0 and −∞ <

ξ < ∞, where µ is a location parameter, σ a scale parameter, and ξ a shape

parameter. For ξ = 0, Eq. (1) is undefined and then the limit is the distribution

function

G(x) = exp

{
−exp

(
−x−µ

σ

)}
, −∞ < x < ∞ (2)

with two parameters. The distribution function in Eq. (2) corresponds to the Gum-

bel family of distributions, or the extreme-value distribution of type I. Several

common distributions belong to the Gumbel domain of maximum, for instance

Weibull, exponential, Gamma, normal, lognormal.

2.2. GENERALISATIONS OF THE GUMBEL DISTRIBUTION

In this subsection, we present the Beta Gumbel distribution and discuss briefly

its extremal properties. A recent comparative review of generalisations of the

Gumbel distribution is made by Pinheiro and Ferrari (2016).

THE BETA GUMBEL DISTRIBUTION

Nadarajah and Kotz (2004) introduced a generalisation of the Gumbel distribu-

tion, the Beta Gumbel (BG) distribution, in hope that this would attract greater

applicability in engineering. By adding two parameters, a and b, which mainly
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control the skewness and kurtosis, it allows the BG more flexibility in modelling

the tail behaviour compared to the Gumbel distribution.

The density function of the BG distribution is given by

f (x) =
1

σB(a,b)
ue−au [1− e−u]b−1 −∞ < x < ∞, (3)

where u = exp{−(x−µ)/σ} and −∞ < µ < ∞, σ > 0, a > 0, b > 0. Here B(a,b)
is the beta function:

B(a,b) =
∫ 1

0
ta−1(1− t)b−1 dt.

In this paper, we denote the BG distribution as BG(µ,σ ,a,b). Further discussion

on the BG distribution, including its background and estimation issues, is found

in Appendix.

In Figure 1, the density function of the BG distribution is plotted for different

values of the parameters. For all curves, µ = 0, σ = 1 and the influence of a and

b is investigated. The solid curve corresponds to a Gumbel distribution (a = b =

1). An interpretation could be that the parameter b is sensitive in terms of the

skewness of the density curve; the lower the parameter, the higher the skewness.

This was also noted by Nadarajah and Kotz (2004) who show that a low value of

b rapidly amplifies the skewness and kurtosis of the density function.

Figure 1: The density function of the BG distribution for different values of a and b with
µ µ µ µ µ = 0 and σσσσσ = 1 fixed.
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THE EXPONENTIATED GUMBEL DISTRIBUTION

Another way of generalising the Gumbel distribution is to consider so-called ex-

ponentiated distributions. This was suggested by Nadarajah (2006) and is defined

as

F(x) = 1−
[

1− exp

{
−exp

(
−x−µ

σ

)}]α
, −∞ < x < ∞,

where α > 0, σ > 0 and −∞ < µ < ∞. Hence, compared to the standard Gumbel,

an extra parameter α > 0 is introduced. Moreover, when a = 1 in the BG dis-

tribution, this reduces to the exponentiated Gumbel (Pinheiro and Ferrari, 2016).

An application to observations of significant wave height was studied by Pers-

son and Rydén (2010). A recent review on exponentiated distributions is given

by Cordeiro, Ortega and da Cunha (2013). We will, however, not examine the

exponentiated Gumbel distribution any closer in the present paper, but focus on

examining properties of the BG distribution.

3. ESTIMATION OF T -YEAR RETURN VALUES

In certain applications of extreme-value analysis, for instance in hydrology and re-

liability engineering, interest is typically in estimation of the T -year return value.

This is defined to be the value xT that will on average be exceeded once over a

period of T years (Fernandez and Salas 1999, Rootzén and Katz 2013). The value

xT can be found by solving the equation

F(xT ) = 1−1/T (4)

where F is the cdf. Solving for xT in Eq. (4) by inverting the cumulative dis-

tribution function can sometimes be difficult or impossible if no closed formula

exists. For the case of continuous distributions, the inverse of a cdf is usually

a well-defined function on (0,1) and an analytical function may sometimes be

found.

3.1. CONFIDENCE INTERVALS

Consider the parameter vector θ =(µ,σ ,a,b) and denote its maximum-likelihood

estimate (MLE) by θ̂ . One can show that under suitable regularity conditions as

n is large, θ̂ is asymptotically normally distributed (see e.g. Young and Smith

(2005), Chapter 8.4). In some cases, we are interested in estimation of functions

of θ̂ , for instance, when confidence intervals for return values are wanted. If the
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regularity conditions are satisfied, a result with use of Taylor’s formula enables us

to find estimation errors of functions of the MLE (see e.g. Rychlik and Rydén,

2006). This method is commonly referred to as the delta method, which we will

present for the particular case where F belongs to the classical Gumbel distribu-

tion.

Employing the inverse of the Gumbel cumulative distribution function yields

a point estimate as

x̂T = µ̂ − σ̂ ln(− ln(1−1/T )) , T > 1

where the MLEs of µ and σ are found by solving through iterative methods

σ = x̄− ∑n
i=1 xi e−xi/σ

∑n
i=1 e−xi/σ ,

µ = −σ ln

(
1

n

n

∑
i=1

e−xi/σ
)
.

A related standard error is found through the variance

v = vTCv

where

v = ∇xT =

[
∂

∂ µ
xT (µ,σ),

∂
∂σ

xT (µ,σ)

]T

and C is the covariance-variance matrix evaluated at (µ̂, σ̂), obtained as the so-

called observed information matrix, involving second-order derivatives of the log-

likelihood function. Employing quantiles from the standard normal distribution,

a confidence interval can finally be constructed.

However, since there is no analytical formula for the quantile function of

the BG distribution, the delta method cannot be applied. Instead, we will use

resampling to estimate standard errors to find approximate confidence intervals.

The delta method (for Gumbel distribution) and resampling techniques (for BG)

are thus used in the sequel.

4. SIMULATION STUDIES

In this section we will perform simulations to further explore the BG distribution,

in particular, possible interpretations of the parameters a and b. Comparison will

be made with the Gumbel distribution (where a = b = 1). Furthermore, we inves-



Statistical Studies of the Beta Gumbel Distribution 11

tigate the impact on estimation of return values, and their associated uncertainties.

The computations were performed using R, version 3.1.2, with the packages evd

(Stephenson, 2002) and lmomco (Asquith, 2016). To find the MLE we used the

routine optim and the BFGS optimisation algorithm. Supplying the exact gra-

dient function of the log-likelihood function to optim did not always render the

maximum of the log-likelihood function but local extreme points. We decided to

let the BFGS method approximate the gradient by numeric approximation.

4.1. PARAMETER ESTIMATION

Based on a sample of random numbers generated from the classical Gumbel dis-

tribution with chosen parameters µ and σ , the MLE for a BG distribution can be

found.

We simulated N = 5000 samples of sample size n = 100 random numbers

from the Gumbel distribution with fixed location parameter µ = 5. In environ-

mental applications, data sets of yearly observations are seldom longer than a few

centuries (often considerably shorter). This motivated our choice of n. The value
of µ was chosen as to be a positive real value, no too close to zero. To investigate

the behaviour of estimated a and b, when fitting a BG distribution, three cases with

varying coefficient of variation were studied, corresponding to low, intermediate

and high variability. For a Gumbel distributed random variable X with location

parameter µ and scale parameter σ ,

E[X ] = µ + γσ , V[X ] =
π2

6
σ2,

where Euler’s constant γ ≈ 0.5772, and the coefficient of variation, cv say, follows

as

cv = R[X ] =
σπ√

6(µ + γσ)
. (5)

We can easily solve for σ in Eq. (5), given values of the location parameter µ and

the coefficient of variation cv:

σ =
cvµ

√
6

π − cvγ
√

6
.

We chose the values of cv to be 0.2, 0.5 and 0.9, respectively. Results are found in

Table 1, where means and standard deviation of the MLE are given. We also give

robust alternatives to location and spread in terms of median and median absolute

deviation (MAD), since some simulations resulted in parameter estimates that

could be considered outliers.
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From Table 1, we may note that the parameter estimates b̂ seem closer to the

value one compared to the estimates â. Using the robust measures, the medians

of b estimates are even closer to one in each of the three situations. We might

conclude, in light of these simulated observations, that the parameter a represents

the flexibility due to the BG.

Comparing the three situations of variability, it seems natural that an increas-

ing value of cv would result in a larger uncertainty of parameter estimates. Indeed,

from Table 1, this is true for the parameters µ and σ . For the parameter a, though,

the standard deviation of the estimates is decreasing with increasing cv. Also the

MAD measure decreases. For the parameter b, the standard deviation of estimates

is increasing with increasing cv, while a slight decrease is found for the MAD

measure.

4.2. QUANTILE ESTIMATION

In this subsection we discuss the behaviour of the quantiles of the BG and the

Gumbel distribution. Regarding the BG distribution, a closed-form expression is

cv = 0.2 (µ = 5, σ = 0.86) cv = 0.5 (µ = 5, σ = 2.52) cv = 0.9 (µ = 5, σ = 5.90)

µ̂ σ̂ â b̂ µ̂ σ̂ â b̂ µ̂ σ̂ â b̂

Mean 4.16 0.89 3.38 1.25 4.04 2.66 1.97 1.27 4.03 6.21 1.47 1.26

Standard dev. 0.61 0.35 1.88 1.11 1.69 1.04 1.53 1.22 2.79 2.37 1.09 1.32

Median 4.02 0.84 3.37 0.98 4.03 2.47 1.40 0.99 4.98 5.79 1.19 0.99

MAD 0.52 0.27 1.96 0.50 1.34 0.74 0.87 0.49 1.66 1.67 0.46 0.47

Table 1: Parameter estimates resulting from simulation from the BG distribution (sample
size n=100, N=5000 samples simulated for each of the three choices of cv).

not available for finding standard errors (see below).

As mentioned earlier, resampling techniques were used to find approximate

confidence intervals (for the BG). For the Gumbel distribution, estimates of the

quantiles and the corresponding standard errors were found by the delta method

as discussed earlier.

The BG distribution can be written as a composition of functions. To see this,

express the BG as a composed function where F(X) = FBeta(G(X)), where G is

the cdf of the parental distribution function. To find a random variable X using

the uniform distribution U , it suffices to solve X = F−1(U):

FBeta(G(X)) =U ⇔ G(X) = F−1
Beta(U) = B ⇔ X = G−1(B)

where the inverse of the Gumbel distribution is G−1(x) = µ −σ ln[− ln(x)]. With

the same argument, and using that the distribution function of the Beta Gumbel



Statistical Studies of the Beta Gumbel Distribution 13

is right-continuous and strictly increasing on p ∈ (0,1) for F−1(p), the quantile

function of BG is

QBG = µ −σ ln
{− ln[QBeta(a,b)(p | a,b)]

}
(6)

for p ∈ (0,1), where QBeta(a,b)(p | a,b) is the quantile function of the Beta dis-

tribution, with p = 1− q,q = 1/T . Note that the quantile function of the Beta

distribution must be calculated numerically.

The simulation was carried out as follows. We chose to simulate from a

Gumbel distribution with parameters µ = 20, σ = 5, the choices of parameter

values guided by the application to study later. A single sample of 100 observa-

tions was generated from the Gumbel distribution, and resampling was thereafter

performed, generating 5000 bootstrap samples.

To study the behaviour of the return values of both BG and Gumbel for longer
return periods, we chose return periods from 100 up to 10 000 years and computed
the corresponding confidence intervals. The results are shown in Figure 2, where
it can be seen that (not surprisingly) the BG distribution has wider confidence
intervals (a consequence of more parameters in the distribution). On the other hand,
the point estimates of return values seem to be quite the same. Thus, based on these
simulations, the Gumbel distribution would be preferred.

Figure 2: Return values and confidence intervals for selected return periods from 100 up to
10 000 years. Left panel: BG distribution. Right panel: Gumbel distribution.
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2 http://www.hurvarvadret.se
3 Extrem punktnederbörd, (2015, 14th of August). Retrieved December 20, 2016, from

http://www.smhi.se/kunskapsbanken/meteorologi/extrem-punktnederbord-1.23041

5. ANALYSIS OF DATA SET: DAILY RAINFALL

To investigate the applicability for modelling real data, we will study annual
maximum daily rainfall in Sweden at two different locations: Stockholm and
Härnösand. The series of annual maximum daily rainfall covers the period from
1961 to 2011 and was retrieved from a website2 which provides weather data with
courtesy of SMHI, Swedish Meteorological and Hydrological Institute. Stockholm
and Härnösand are located in areas of Sweden where some of the most extreme
rainfall events (defined as at least 90 mm precipitation during 24 hours) have
occurred, especially the latter one3.

5.1 NOTES ON MEASUREMENTS

Precipitation can be measured in two main ways: either at a fixed geospatial point

location (say, a weather station) or over a geographical region, by collecting data

from numerous weather stations scattered around a large area and then picking the

most extreme record.

Measuring the amount of rainfall is done by rain gauges which gather and

measure the accumulated amount of liquid over a specific period of time. Due to

limitations, the amount of precipitation cannot be measured accurately. During

hurricanes or windy weather it is difficult to gather the rainfall which leads to

under-estimation of the precipitation. Moreover, any evaporation will reduce the

amount of measured precipitation. In numbers, the total under-estimation is on

average of 5–10 %, see Wern (2012).

In winter any snow gathered by the instrument will be melted and the melted

water is measured. For definitions on how precipitation is measured, see Wern

(2012).

In Figure 3, the time series of annual daily maxima are plotted for Stockholm

and Härnösand, respectively. By visual inspection, Härnösand seems to have on

average a higher annual maximum daily rainfall. (From data, we find the means

31.7 mm and 42.0 mm, respectively.) Furthermore, no apparent trend is visible.

To investigate possible dependence between observations in each sequence, sam-

5.2 INTRODUCTORY ANALYSIS
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ple autocorrelation plots up to lag 15 are shown in Figure 4. Most values fall

within the confidence limits and there is thus no major concern of dependence.

The ACF of Härnösand shows a cut-off at lag 4, but the dependence seems overall

weak.

Figure 3: Annual maximum daily rainfall records in Stockholm (top) and Härnösand
(bottom).
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Figure 4: Sample autocorrelation functions for both datasets: Stockholm (top) and
Härnösand (bottom).

5.3 ANALYSIS OF FITTED DISTRIBUTIONS

An important problem in statistical methodology of today is check of model
assumptions and, if several models are possible, model choice. We first investigate
the fit of the BG distribution to the two datasets by graphical means. In Figure 5 the
empirical distribution and the fitted BG model are plotted. For both locations, our
model agrees reasonably well with the empirical cdf. We also provide the QQplot
in Figure 6, and notice no apparent departures from the straight line except at a few
points for dataset 2 (Härnösand). From these plots, the BG distribution seems to be
a plausible model.



Statistical Studies of the Beta Gumbel Distribution 17

Figure 5: Empirical distribution versus fitted distribution functions for BG, Stockholm
(left) and Härnösand (right).

We now turn to the problem of model choice, comparing BG to other
candidate models such as the Gumbel distribution and the GEV, and we will then
perform likelihood-ratio tests, and also investigate using the Akaike information
criterion (AIC).

Figure 6: QQ-plots for the data sets, Stockholm (left) and Härnösand (right).
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Table 2: The maximum log-likelihood values for each distribution.

lnL( θ̂ )

Stockholm

BG –184.0948
GEV –184.1427
Gumbel –184.1654

Härnösand

BG –195.9717
GEV –196.1058
Gumbel –196.1798

Likelihood-ratio tests

The maximum log-likelihood values for each distribution are given in Table 2. For

these data sets we had to use the Nelder–Mead algorithm for optimising the log-

likelihood function of the BG distribution. Note that the highest log-likelihood

value is obtained by fitting the BG. However, the differences in the log-likelihood

values between the distributions are very small. We can use the log-likelihood-

ratio test to check whether one higher-order parameter model describes the vari-

ability significantly better. A log-likelihood statistic is D = 2[log(M1)− log(M0)]

where M0 is a reduction of the model M1. The statistic D is chi-square distributed

with p−k degrees of freedom, where p and k are the dimensions of the parameter

space of M1 and M0, respectively. The null hypothesis is rejected if D > χ2
p−k,

favouring the M1 model which describes the variability of the data significantly

better.

We consider two situations. Comparing the Gumbel distribution to the GEV

distribution is equal to testing

H0 : ξ = 0 against H1 : ξ � 0.

We can also test the Gumbel against the BG distribution since it is a reduction of

the BG distribution of the parameter space a×b

H0 : a = 1, b = 1 against H1 : a � 1, b � 1

and hence a χ2 distribution with 4− 2 = 2 degrees of freedom. In Table 3, the

values of the observed test statistics are given, along with p-values (obtained via

χ2(1) and χ2(2) distributions, respectively).
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Akaike Information Criterion (AIC)

In general, it is not desirable to use too complicated models; frequently, the sim-

plest model is most likely to be correct, and one can test whether the more com-

plicated model explains the variability significantly better. To test whether one

model with a higher number of parameters models the data significantly better

than another candidate model with a lower number of parameters, we can use

the Akaike information criterion, a test statistic that penalises over-fitting. The

test statistic is given by AIC = −2lnL(θ̂)+2p, where p is the number of model

parameters.

Table 3: Values of observed test statistics and related p-values.

Model comparison Location D p-value

Gumbel vs. GEV Stockholm 0.045 0.83
Härnösand 0.15 0.70

Gumbel vs. BG Stockholm 0.14 0.93
Härnösand 0.42 0.81

From Table 3, we note that for all situations of model comparison and at all
locations, the hypothesis of the simpler model (i.e. Gumbel) cannot be rejected.
From a modelling perspective, the Gumbel distribution seems adequate.

Table 4: AIC values and parameter estimates of the different distributions.

Parameter estimate

AIC µ̂ σ̂ â b̂ ξ̂

Stockholm

BG 376.19 16.53 6.44 3:89 0:77
GEV 374.29 27.19 7.51 0:023
Gumbel 372.33 27.28 7.57

Härnösand

BG 399.94 19.17 6.50 6:43 0:56
GEV 398.21 36.16 9.36 0:048
Gumbel 396.36 36.41 9.55

In Table 4, AIC values and parameter estimates are presented. We first dis-

cuss AIC values, and note that at both locations, the Gumbel alternative has the

lowest AIC and should be preferred. Comparing BG and GEV, for both locations

GEV has the smaller AIC and should be an option rather than BG. Turning now

to parameter estimates of the shape parameter ξ , we observe that the estimate for
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GEV has a quite low value at both locations. To test whether ξ is significantly

nonzero, we use that the MLE is asymptotically normally distributed. The stan-

dard errors of the estimates are 0.13 (Stockholm) and 0.11 (Härnösand), resulting

in two-sided p-values 0.83 and 0.71, respectively. Hence, for both data sets, the

null hypothesis of ξ = 0 cannot be rejected. Therefore, one may argue that the

Gumbel distribution models the data equally well. A reduction would be prefer-

able here, but for the sake of comparison we will keep the GEV in the sequel.

5.4. ESTIMATION OF RETURN VALUES

In this subsection, we present estimated return values for each distribution and

the corresponding confidence intervals. The confidence intervals of the GEV and

Gumbel distribution were derived as usual with the delta method. To find approx-

imate confidence intervals of the BG distribution, we used resampling methodology.
Both samples were resampled 2000 times.

Table 5: Return level estimates and corresponding confidence intervals.Return levels with
95% C.I.

Return levels with 95% C.I.

T = 100 (x100) T = 500 (x500) T = 1000 (x1000)

Stockholm

BG 64.3 (51.2, 78.0) 77.8 (58.5, 97.6) 83.6 (61.7, 106.0)

GEV 63.6 (46.2, 81.0) 77.3 (45.4, 109.2) 83.3 (43.6, 123.1)

Gumbel 62.0 (53.6, 70.6) 74.3 (63.2, 85.4) 79.5 (67.4, 91.7)

Härnösand

BG 85.3 (66.5, 105.9) 103.4 (74.6, 133.6) 111.2 (77.9, 145.7)

GEV 84.4 (57.6, 111.1) 104.0 (52.1, 155.8) 112.9 (47.0, 178.8)

Gumbel 80.3 (69.5, 91.1) 95.7 (81.6, 109.8) 102.3 (86.8, 117.9)

From Table 5, we note regarding point estimates that both GEV and BG
distributions render higher estimates of the return values compared to the Gumbel
distribution; especially for the higher 1000-year return period. The estimates do not
differ largely from a practical point of view. Moreover, we see that GEV and BG
are more conservative in estimating the return value. This is valid for both datasets.
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Regarding confidence intervals, when comparing GEV and BG, GEV has wider
intervals. Note, though, that different methods were employed (delta method vs.
resampling). In any case, the confidence intervals are wide from an applied point
of view.

5.5 LONGER RETURN PERIODS

Next, we investigate the behaviour of longer return periods for the different distri-
butions.

 Estimation of longer return periods is only meaningful if the assumption of
stationarity is valid, but still, as a risk measure, the notion of return periods of up
10 000 years is useful. For instance, in dike design in the Netherlands (Botzen et al
2009), the 10 000-year return flood level is used. It could be mentioned that Rootzén
and Katz (2013) propose a notion of design life level in order to quantify risk in a
changing climate.

In Figures 7 and 8, estimates of the return values for varying return periods are
presented, and we note e.g. that the Gumbel distribution gives the lowest estimates
(cf. the findings in Table 5). Moreover, the GEV renders higher estimates compared
to the BG distribution, which are higher the longer the return period.

Figure 7: Return values for Stockholm.
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Figure 8: Return values for Härnösand.

5.6  REMARKS ON NUMERICAL COMPUTATIONS

When applying the BG to real data, we had problems finding the standard errors.
This was related to the calculation of the inverse of the BG distribution function (i.e.
the quantile function). The formula for the quantiles given in Eq. (6) involves the
inverse of the Beta distribution function which has to be calculated numerically.
After resampling the real data 2000 times, thus yielding 2000 parameter sets of
resampled data, we encountered problems in calculating the inverse of the Beta
distribution. More precisely, for some parameter sets, it was difficult to find
quantiles q, FBeta(q) = p, for p close to 1 since the formula was highly sensitive to
precision errors giving us indefinite quantiles.

As noted, the inverse is injective only on (0,1) and for some parameter sets,
the part of the formula involving the inverse of the Beta distribution yielded
us a value of 1.0, whenever we tried to find quantiles for p close to 1.0. This is of
course not well-defined and gives quantiles that are indefinite (infinite).

All numerical computations were done in R which uses finite-precision
arithmetic which basically means that about up to 16 digits are correct (or accurate)
in the computations. We therefore had to rely on an alternative software that uses
arbitrary-precision arithmetic to do the computations, meaning that any number of
precision of digits can be used. When using Mathematica (a computer algebra
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system) we found that a precision of at least 30 up to 39 digits had to be used to
perform the computations of the quantiles. (Mathematica was used to produce the
estimates in Table 5.) Even with a difference as negligible as 10-39 (i.e.1 – 10-39 =1),
the logarithmic function in the formula in Eq. (6) is not defined at 1. The quantile
function also involves computation of a composition of functions (logarithmic
function within a logarithmic function). This gives large differences in evaluating
the formula (6) for values close to 1.

6. DISCUSSION

We have studied a generalisation of the Gumbel distribution, the Beta Gumbel (BG)
distribution, which has two additional parameters that allow for skewness and
variability of the tail weights. From simulations, we found some evidence that the
BG does indeed provide more flexibility than the Gumbel distribution.

Finding the MLEs for the BG distribution was also in some situations tricky
since we were then faced with computational problems. For arbitrary values of a
and b, estimates could sometimes not be found (especially with b close to 0). If this
is related to the curvature of the four-dimensional function or a matter of numerical
issue is unclear. The BG distribution involves the incomplete beta function and also
makes it more difficult to work with. The numerical problems related to the Beta
distribution have been pointed out e.g. by Cordeiro and Castro (2011), where
another generalisation of the Gumbel distribution was presented, a so-called Kw-
Gumbel.

We compared the BG to the Gumbel distribution as well as to the GEV
distribution when modelling real data. Likelihood-ratio tests as well as comparisons
by AIC were made. Since tail behaviour is of interest, the Anderson–Darling test
could be applied; however, this would have implied finding critical points for the
test statistic with respect to the BG distribution, and this extra work was not
performed. It should be noted that BG, which is a four-parameter model compared
to the three-parameter model of GEV, makes the numerical work more problematic.
Optimisation in four dimensions is highly more difficult than in a threedimensional
space. We conclude that for the analysed data, the simpler Gumbel distribution
would be a preferred option (Tables 3 and 4).

We cannot conclude whether BG is a better candidate model to use. As has
been pointed out by Pinheiro and Ferrari (2016), the BG is non-identifiable. Further
work has to be done to study this distribution and its applicability in various fields
and contexts, but the numerical obstacles and its non-identifiability suggest that
there are other candidate distributions to investigate.
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APPENDIX: THE BETA GUMBEL DISTRIBUTION

THE BETA GUMBEL DISTRIBUTION

We here review the background of the derivation of the BG distribution, following

Nadarajah and Kotz (2004). Let G be the cumulative distribution function. Then

a generalised class of Beta distribution functions can be defined by

F(x) = IG(x)(a,b) (7)

where IG(x)(a,b) is the incomplete beta ratio function. In this paper we study the

Beta Gumbel distribution in which G(x) belongs to the Gumbel distribution. The

generalization in Eq.(7) can be rewritten as

IG(x)(a,b) =
BG(x)(a,b)

B(a,b)
, a > 0, b > 0

where B(a,b) is the beta function

B(a,b) =
∫ 1

0
ta−1(1− t)b−1 dt

and BG(x)(a,b) is the incomplete beta function given by

BG(x)(a,b) =
∫ G(x)

0
ta−1(1− t)b−1 dt, a > 0, b > 0.

If we in Eq. (7) let G correspond to the Gumbel distribution, this gives a gener-

alisation of the original (parental) distribution G which we call the Beta Gumbel

distribution and denote BG(µ,σ ,a,b). For the special case where a = 1 and b = 1

the distribution coincides with the Gumbel distribution. We can now define the

probability-density function as

f (x) := F ′(x) =
d

dx
1

B(a,b)

∫ G(x)

0
ta−1(1− t)b−1 dt

=
g(x)

B(a,b)
G(x)a−1 [1−G(x)]b−1

(8)

where g(x) is the density function of the parental distribution. From Eq.(8) it

follows that the density function of the Beta Gumbel distribution is given by

f (x) =
1

σB(a,b)
ue−au [1− e−u]b−1 −∞ < x < ∞, (9)

for −∞ < µ < ∞, σ > 0, a > 0, and b > 0, where u = exp{−(x−µ)/σ}.
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ESTIMATION ISSUES

To find point estimates of the parameters (µ,σ ,a,b) of the BG distribution, the

method of maximum likelihood is employed. The log-likelihood function was

given by Nadarajah and Kotz (2004) and is as follows:

lnL(µ,σ ,a,b | x) =−n lnσ +(b−1)
n

∑
i=1

ln

[
1− exp

{
−exp

(
−xi −µ

σ

)}]
−

n

∑
i=1

xi −µ
σ

−a
n

∑
i=1

exp

(
−xi −µ

σ

)
−n lnB(a,b).

(10)

Taking the partial first-order derivatives of Eq. (10) with respect to each parameter,

we obtain

∂ lnL
∂ µ

=
n
σ
− a

σ

n

∑
i=1

exp

(
−xi −µ

σ

)
+

b−1

σ

n

∑
i=1

exp(−(xi −µ)/σ)exp{−exp(−(xi −µ)/σ)}
1− exp{−exp(−(xi −µ)/σ)} ,

∂ lnL
∂σ

=− n
σ
+

n

∑
i=1

xi −µ
σ2

{
1−aexp

(
−xi −µ

σ

)}
+

b−1

σ2

n

∑
i=1

(xi −µ)exp(−(xi −µ)/σ)exp{−exp(−(xi −µ)/σ)}
1− exp{−exp(−(xi −µ)/σ)} ,

∂ lnL
∂a

=nψ(a+b)−nψ(a)−
n

∑
i=1

exp

(
−xi −µ

σ

)
,

∂ lnL
∂b

=nψ(a+b)−nψ(b)+
n

∑
i=1

ln

[
1− exp

{
−exp

(
−xi −µ

σ

)}]
.

where ψ is the digamma function, ψ(x) = dlnΓ(x)/dx = Γ′(x)/Γ(x). Note that
∂

∂ µ lnL is slightly different from the one given by Nadarajah and Kotz (2004)

which is likely due to a misprint in the original source. Estimates of µ , σ , a and

b are found by setting the partial derivatives to zero and solving the subsequent

simultaneous equations.
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APPENDIX: DATASETS

Table 6: Stockholm data set.

25.5 40.0 22.8 38.8 27.0 43.0 33.9 31.9

36.5 22.4 25.6 35.8 23.4 41.1 30.9 28.4

39.7 56.0 32.3 49.8 26.0 23.6 21.7 44.9

20.8 31.0 18.2 54.1 27.8 26.0 25.0 45.8

40.4 31.0 31.7 22.0 38.3 32.4 25.5 33.1

34.6 14.5 23.7 29.5 23.3 24.2 24.0 20.5

32.2 27.6 59.8

Table 7: Härnösand data set.

34.7 38.7 34.3 47.2 30.5 57.0 45.2 33.2

43.4 40.9 57.9 49.0 53.9 29.6 77.0 33.9

27.1 28.5 78.4 48.0 41.3 35.6 40.1 61.8

42.9 47.3 29.7 50.4 59.0 66.2 32.4 47.7

40.1 50.2 39.5 40.0 26.0 34.5 45.8 28.4

24.2 27.2 48.3 43.1 31.4 52.9 37.2 31.0

24.7 43.0 34.0


