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STATISTICAL STUDIES OF THE BETA GUMBEL

DISTRIBUTION: ESTIMATION OF EXTREME LEVELS OF
PRECIPITATION
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Abstract Generalisations of common families of distributions are of interest in their own
right as well as for applications. A Beta Gumbel distribution has earlier been introduced
as a generalisation of the Gumbel distribution, suggesting that this would provide a more
flexible tail behaviour compared to the Gumbel distribution. Through simulation studies,
the distributions are here compared closer, e.g. with respect to estimation of quantiles.
Moreover, real data in the form of extreme rainfall are analysed and assessment is made
whether the proposed Beta Gumbel distribution can be superior to the standard distribu-
tions with respect to modelling tail behaviour. Estimates of return values corresponding
to return periods of lengths from 100 up to 100 000 years are found, as well as the related
confidence intervals. The distribution considered does indeed provide more flexibility, but
to the price of computational issues.

Keywords: Beta distribution, Beta Gumbel distribution, Gumbel distribution, Quantiles,
Rainfall.

1. INTRODUCTION

Statistical modelling of extreme values is of importance in many fields of science
and technology, e.g. in environmental applications to yearly maximal tempera-
tures, river discharges etc. A limiting distribution for the maximum of many of the
most common families of distributions is the Gumbel distribution, which is a spe-
cial case of the so-called Generalised Extreme Value (GEV) distribution. In many
typical applications, the tail behaviour is of particular interest, for instance when
estimating quantiles. Hence, flexibility is desirable, and generalisations have been
suggested, as the GEV distribution is obtained in the limit. For a practical situ-
ation with occasionally a limited amount of observations, generalisations of the
Gumbel distribution may therefore be of interest (Pinheiro and Ferrari, 2016).
Generalisation of distributions has been discussed frequently. A generalised
class of the Beta distribution was first given by Eugene, Lee and Famoye (2002),
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where the Beta Normal distribution was introduced as a generalisation of the Nor-
mal distribution. Compared to the classical Normal distribution, this generalisa-
tion rendered greater flexibility of the shape of the distribution. Turning to the
Gumbel distribution, Nadarajah and Kotz (2004) introduced the Beta Gumbel dis-
tribution and claimed that this allows for greater flexibility when explaining the
variability of the tail compared to the Gumbel distribution. Several mathemat-
ical properties of the distribution were presented, such as moments, asymptotic
results and estimation issues. However, no applied example was presented, and
the present article has as its main aim to further discuss the intended flexibility of
the Beta Gumbel distribution, exploring it through simulation studies. Moreover,
a case study within environmental statistics is performed: estimation of return
values for measurements of precipitation.

The paper is organised as follows. In Section 2, a brief introduction to sta-
tistical extreme-value analysis is given, including presentation of the Gumbel and
Beta Gumbel distribution. In Section 3, we review estimation issues, in particular
estimation of return levels, directly related to quantiles in the extreme-value dis-
tribution. Results from simulation studies are presented in Section 4, involving
estimation of quantiles, while a real data set with annual maximum daily rainfall
for two locations in Sweden is analysed in Section 5. Finally, conclusions are
given in Section 6.

2. EXTREME-VALUE DISTRIBUTIONS

In this section, we first review the basic assumptions and notions from classical
extreme-value theory. In light of this, the Beta Gumbel distribution is then pre-
sented.

2.1. LIMITING DISTRIBUTIONS IN EXTREME-VALUE ANALYSIS

In the classical extreme-value analysis, focus is on the quantity
M, = max(Xi,...,X,)

where Xi,...,X, is a sequence of independent and identically distributed random
variables from some distribution F'. Under suitable conditions, the distribution of
M, can be approximated for large values of n. This asymptotic result, sometimes
named the extremal types theorem, states that the distribution of M,, belongs to
a single family of distributions, regardless of the unknown distribution F. See
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e.g. Coles (2001) or Beirlant et al (2004) for a thorough presentation, including
historical developments.

The extremal types theorem states that if there exist sequences of constants
{a, >0} and {b, } such that

P((Mn _bn)/an < X) — G(X) asn — oo,

where G is a non-degenerate distribution function, then the distribution G be-
longs to one of the following three families of distributions: Gumbel, Fréchet and
Weibull, respectively. These are occasionally called extreme-value distribution of
type I, II and III, respectively. These families of distributions can be combined
into one single family called the Generalised Extreme Value (GEV) distribution.
The distribution function of the GEV distribution has the following form:

G(x>=exp{— [1+5 (—x;“ﬂ_l/é}? (1

where x is defined for 1+ & (x— )/ > 0, where —oo <t < o0, 6 > 0 and —oo <
& < oo, where u is a location parameter, ¢ a scale parameter, and & a shape
parameter. For & = 0, Eq. (1) is undefined and then the limit is the distribution

function
xX—H
G(x)zf:xp{—exp(— )}, —oo < x < o0 (2)

o

with two parameters. The distribution function in Eq. (2) corresponds to the Gum-
bel family of distributions, or the extreme-value distribution of type 1. Several
common distributions belong to the Gumbel domain of maximum, for instance
Weibull, exponential, Gamma, normal, lognormal.

2.2. GENERALISATIONS OF THE GUMBEL DISTRIBUTION

In this subsection, we present the Beta Gumbel distribution and discuss briefly
its extremal properties. A recent comparative review of generalisations of the
Gumbel distribution is made by Pinheiro and Ferrari (2016).

THE BETA GUMBEL DISTRIBUTION

Nadarajah and Kotz (2004) introduced a generalisation of the Gumbel distribu-
tion, the Beta Gumbel (BG) distribution, in hope that this would attract greater
applicability in engineering. By adding two parameters, a and b, which mainly
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control the skewness and kurtosis, it allows the BG more flexibility in modelling
the tail behaviour compared to the Gumbel distribution.
The density function of the BG distribution is given by

1 —au —u]b-1
=— 1—e™ —o0 < x < o0 3
1= sy e v ®
where u =exp{—(x—u)/0} and —oo < U <0, 6 >0,a >0, b > 0. Here B(a,b)
is the beta function:

1
B(a,b):/ (1 =),
0

In this paper, we denote the BG distribution as BG(u, 0, a,b). Further discussion
on the BG distribution, including its background and estimation issues, is found
in Appendix.

In Figure 1, the density function of the BG distribution is plotted for different
values of the parameters. For all curves, 4 =0, 0 = 1 and the influence of a and
b is investigated. The solid curve corresponds to a Gumbel distribution (@ = b =
1). An interpretation could be that the parameter b is sensitive in terms of the
skewness of the density curve; the lower the parameter, the higher the skewness.
This was also noted by Nadarajah and Kotz (2004) who show that a low value of
b rapidly amplifies the skewness and kurtosis of the density function.
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Figure 1: The density function of the BG distribution for different values of a and b with
p=0and o= 1fixed.
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THE EXPONENTIATED GUMBEL DISTRIBUTION

Another way of generalising the Gumbel distribution is to consider so-called ex-
ponentiated distributions. This was suggested by Nadarajah (2006) and is defined

[ O SR S

where & > 0, 0 > 0 and —oo < u < 0. Hence, compared to the standard Gumbel,
an extra parameter & > 0 is introduced. Moreover, when a = 1 in the BG dis-
tribution, this reduces to the exponentiated Gumbel (Pinheiro and Ferrari, 2016).
An application to observations of significant wave height was studied by Pers-
son and Rydén (2010). A recent review on exponentiated distributions is given
by Cordeiro, Ortega and da Cunha (2013). We will, however, not examine the
exponentiated Gumbel distribution any closer in the present paper, but focus on
examining properties of the BG distribution.

3. ESTIMATION OF 7-YEAR RETURN VALUES

In certain applications of extreme-value analysis, for instance in hydrology and re-
liability engineering, interest is typically in estimation of the 7-year return value.
This is defined to be the value xy that will on average be exceeded once over a
period of T years (Fernandez and Salas 1999, Rootzén and Katz 2013). The value
x7 can be found by solving the equation

F(xr)=1-1/T 4)

where F is the cdf. Solving for xy in Eq. (4) by inverting the cumulative dis-
tribution function can sometimes be difficult or impossible if no closed formula
exists. For the case of continuous distributions, the inverse of a cdf is usually
a well-defined function on (0, 1) and an analytical function may sometimes be
found.

3.1. CONFIDENCE INTERVALS

Consider the parameter vector 6 = (1,0, a,b) and denote its maximum-likelihood
estimate (MLE) by 6. One can show that under suitable regularity conditions as
n is large, 0 is asymptotically normally distributed (see e.g. Young and Smith
(2005), Chapter 8.4). In some cases, we are interested in estimation of functions
of 5, for instance, when confidence intervals for return values are wanted. If the
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regularity conditions are satisfied, a result with use of Taylor’s formula enables us
to find estimation errors of functions of the MLE (see e.g. Rychlik and Rydén,
2006). This method is commonly referred to as the delta method, which we will
present for the particular case where F belongs to the classical Gumbel distribu-
tion.

Employing the inverse of the Gumbel cumulative distribution function yields
a point estimate as

xr=u—oln(-In(1-1/T)), T>1

where the MLEs of u and o are found by solving through iterative methods

1 n
= —_ —_ 7X,'/(7
u Gln(n.z e )

A related standard error is found through the variance
v=v'Cv

where
=Vxr = 2 (u,0) 9 (u,0) '
V 'xT au'xT b ) anT b

and C is the covariance-variance matrix evaluated at (I, 0), obtained as the so-
called observed information matrix, involving second-order derivatives of the log-
likelihood function. Employing quantiles from the standard normal distribution,
a confidence interval can finally be constructed.

However, since there is no analytical formula for the quantile function of
the BG distribution, the delta method cannot be applied. Instead, we will use
resampling to estimate standard errors to find approximate confidence intervals.
The delta method (for Gumbel distribution) and resampling techniques (for BG)
are thus used in the sequel.

4. SIMULATION STUDIES

In this section we will perform simulations to further explore the BG distribution,
in particular, possible interpretations of the parameters a and b. Comparison will
be made with the Gumbel distribution (where a = b = 1). Furthermore, we inves-
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tigate the impact on estimation of return values, and their associated uncertainties.
The computations were performed using R, version 3.1.2, with the packages evd
(Stephenson, 2002) and 1momco (Asquith, 2016). To find the MLE we used the
routine optim and the BFGS optimisation algorithm. Supplying the exact gra-
dient function of the log-likelihood function to optim did not always render the
maximum of the log-likelihood function but local extreme points. We decided to
let the BFGS method approximate the gradient by numeric approximation.

4.1. PARAMETER ESTIMATION

Based on a sample of random numbers generated from the classical Gumbel dis-
tribution with chosen parameters u and o, the MLE for a BG distribution can be
found.

We simulated N = 5000 samples of sample size n = 100 random numbers
from the Gumbel distribution with fixed location parameter 4 = 5. In environ-
mental applications, data sets of yearly observations are seldom longer than a few

centuries (often considerably shorter). This motivated our choice of n. The value
of 1 was chosen as to be a positive real value, no too close to zero. To investigate

the behaviour of estimated a and b, when fitting a BG distribution, three cases with
varying coefficient of variation were studied, corresponding to low, intermediate
and high variability. For a Gumbel distributed random variable X with location
parameter y and scale parameter G,

2

EX] = +70, VIX]="-0?

where Euler’s constant ¥~ 0.5772, and the coefficient of variation, c, say, follows
as o
o =RX] =" 5)
' V6(u + 7o)

We can easily solve for o in Eq. (5), given values of the location parameter ¢ and
the coefficient of variation c,:

o Cvﬂ\@
B ﬂ_cv')/\/g.

We chose the values of ¢, to be 0.2, 0.5 and 0.9, respectively. Results are found in
Table 1, where means and standard deviation of the MLE are given. We also give
robust alternatives to location and spread in terms of median and median absolute
deviation (MAD), since some simulations resulted in parameter estimates that
could be considered outliers.
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From Table 1, we may note that the parameter estimates b seem closer to the
value one compared to the estimates d. Using the robust measures, the medians
of b estimates are even closer to one in each of the three situations. We might
conclude, in light of these simulated observations, that the parameter a represents
the flexibility due to the BG.

Comparing the three situations of variability, it seems natural that an increas-
ing value of ¢, would result in a larger uncertainty of parameter estimates. Indeed,
from Table 1, this is true for the parameters ( and . For the parameter a, though,
the standard deviation of the estimates is decreasing with increasing c,. Also the
MAD measure decreases. For the parameter b, the standard deviation of estimates
is increasing with increasing c,, while a slight decrease is found for the MAD
measure.

Table 1: Parameter estimatesresulting from simulation from the BG distribution (sample
sizen=100, N=5000 samples simulated for each of the three choices of cv).

¢, =02(u=5,0=0.86) ¢, =05(u=5,0=252) ¢, =09 (u=35,0=590)

il & a b il & a b i} & a b
Mean 416 089 338 125 404 266 197 127 403 621 147 126
Standard dev.  0.61 035 188 111 169 104 153 122 279 237 109 132
Median 402 084 337 098 403 247 140 099 498 579 1.19 099
MAD 052 027 196 050 134 074 087 049 166 167 046 047

4.2. QUANTILE ESTIMATION

In this subsection we discuss the behaviour of the quantiles of the BG and the

Gumbel distribution. Regarding the BG distribution, a closed-form expression is
not available for finding standard errors (see below).

As mentioned earlier, resampling techniques were used to find approximate
confidence intervals (for the BG). For the Gumbel distribution, estimates of the
quantiles and the corresponding standard errors were found by the delta method
as discussed earlier.

The BG distribution can be written as a composition of functions. To see this,
express the BG as a composed function where F (X) = Fgeta(G(X)), where G is
the cdf of the parental distribution function. To find a random variable X using
the uniform distribution U, it suffices to solve X = F~1(U):

Few(G(X))=U & G(X)=F3. (U)=B & X=G!(B)

Beta

where the inverse of the Gumbel distribution is G~!(x) = u — o'In[—In(x)]. With
the same argument, and using that the distribution function of the Beta Gumbel
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is right-continuous and strictly increasing on p € (0,1) for F~!(p), the quantile
function of BG is

QBG =U—- Gln{_ln[QBeta(a,b) (p ’ a7b)] } (6)

for p € (0,1), where Opea(ap)(P | @, b) is the quantile function of the Beta dis-
tribution, with p = 1 —¢,q = 1/T. Note that the quantile function of the Beta
distribution must be calculated numerically.

The simulation was carried out as follows. We chose to simulate from a
Gumbel distribution with parameters 4 = 20, o = 5, the choices of parameter
values guided by the application to study later. A single sample of 100 observa-
tions was generated from the Gumbel distribution, and resampling was thereafter
performed, generating 5000 bootstrap samples.

To study the behaviour of thereturn values of both BG and Gumbel for longer
return periods, we chose return periodsfrom 100 up to 10 000 years and computed
the corresponding confidence intervals. The results are shown in Figure 2, where
it can be seen that (not surprisingly) the BG distribution has wider confidence
intervals(aconsequence of more parametersin thedistribution). Ontheother hand,
the point estimates of return values seem to be quitethe same. Thus, based on these
simulations, the Gumbel distribution would be preferred.

Beta Gumbel Gumbel

35 — ‘ ‘ ‘ 35 — T T T
100 2000 4000 6000 8000 10000 100 2000 4000 6000 8000 10000

Return period (years) Return period (years)

Figure 2: Return values and confidence intervalsfor selected return periods from 100 up to
10 000 years. L eft panel: BG distribution. Right panel: Gumbel distribution.



14 Jonsson, F., Rydén, J.

5.ANALYSISOF DATA SET: DAILY RAINFALL

To investigate the applicability for modelling real data, we will study annual
maximum daily rainfall in Sweden at two different locations: Stockholm and
Harnosand. The series of annual maximum daily rainfall covers the period from
1961 to 2011 and was retrieved from awebsite? which provides weather datawith
courtesy of SMHI, Swedish Meteorological and Hydrol ogical Institute. Stockholm
and Harntsand are located in areas of Sweden where some of the most extreme
rainfall events (defined as at least 90 mm precipitation during 24 hours) have
occurred, especially the latter one?.

51 NOTESON MEASUREMENTS

Precipitation can be measured in two main ways: either at a fixed geospatial point
location (say, a weather station) or over a geographical region, by collecting data
from numerous weather stations scattered around a large area and then picking the
most extreme record.

Measuring the amount of rainfall is done by rain gauges which gather and
measure the accumulated amount of liquid over a specific period of time. Due to
limitations, the amount of precipitation cannot be measured accurately. During
hurricanes or windy weather it is difficult to gather the rainfall which leads to
under-estimation of the precipitation. Moreover, any evaporation will reduce the
amount of measured precipitation. In numbers, the total under-estimation is on
average of 5-10 %, see Wern (2012).

In winter any snow gathered by the instrument will be melted and the melted
water is measured. For definitions on how precipitation is measured, see Wern
(2012).

52INTRODUCTORY ANALYSIS

In Figure 3, the time series of annual daily maxima are plotted for Stockholm
and Harndsand, respectively. By visual inspection, Hiarndsand seems to have on
average a higher annual maximum daily rainfall. (From data, we find the means
31.7 mm and 42.0 mm, respectively.) Furthermore, no apparent trend is visible.
To investigate possible dependence between observations in each sequence, sam-

http://www.hurvarvadret.se
8 Extrem punktnederbord, (2015, 14th of August). Retrieved December 20, 2016, from
http://www.smhi.se/kunskapsbanken/meteorol ogi/extrem-punktnederbord-1.23041
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ple autocorrelation plots up to lag 15 are shown in Figure 4. Most values fall
within the confidence limits and there is thus no major concern of dependence.
The ACF of Harndsand shows a cut-off at lag 4, but the dependence seems overall

weak.
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Figure 3: Annual maximum daily rainfall recordsin Stockholm (top) and Har nésand

(bottom).
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Figure 4: Sample autocorrelation functionsfor both datasets: Stockholm (top) and
Hé&rnodsand (bottom).

53ANALYSISOF FITTED DISTRIBUTIONS

An important problem in statistical methodology of today is check of model
assumptionsand, if severa modelsare possible, model choice. Wefirstinvestigate
thefit of the BG distribution to thetwo datasets by graphical means. In Figure5the
empirical distribution and the fitted BG model are plotted. For both locations, our
model agrees reasonably well with the empirical cdf. We also provide the QQplot
in Figure 6, and notice no apparent departuresfrom the straight line except at afew
pointsfor dataset 2 (Harndsand). From these plots, the BG distribution seemsto be
aplausible model.
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Figure 6: QQ-plotsfor the data sets, Stockholm (left) and Harnésand (right).

We now turn to the problem of model choice, comparing BG to other
candidate models such as the Gumbel distribution and the GEV, and we will then
perform likelihood-ratio tests, and also investigate using the Akaike information
criterion (AIC).
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Table 2: Themaximum log-likelihood values for each distribution.

InL(g)

Stockholm

BG —184.0948
GEV —184.1427
Gumbel -184.1654
Harndsand

BG -195.9717
GEV —196.1058
Gumbel -196.1798

Likelihood-ratio tests

The maximum log-likelihood values for each distribution are given in Table 2. For
these data sets we had to use the Nelder—Mead algorithm for optimising the log-
likelihood function of the BG distribution. Note that the highest log-likelihood
value is obtained by fitting the BG. However, the differences in the log-likelihood
values between the distributions are very small. We can use the log-likelihood-
ratio test to check whether one higher-order parameter model describes the vari-
ability significantly better. A log-likelihood statistic is D = 2[log(M;) — log(Mj)]
where My is a reduction of the model M;. The statistic D is chi-square distributed
with p — k degrees of freedom, where p and k are the dimensions of the parameter
space of M, and M, respectively. The null hypothesis is rejected if D > %[%7](’
favouring the M; model which describes the variability of the data significantly
better.

We consider two situations. Comparing the Gumbel distribution to the GEV
distribution is equal to testing

Hy:£=0 against H;: & #0.

We can also test the Gumbel against the BG distribution since it is a reduction of

the BG distribution of the parameter space a x b
Hy:a=1,b=1 against Hy:a#1,b#1

and hence a y? distribution with 4 —2 = 2 degrees of freedom. In Table 3, the
values of the observed test statistics are given, along with p-values (obtained via
x%(1) and x2(2) distributions, respectively).
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Table 3: Values of observed test statisticsand related p-values.

Model comparison Location D p-value

Gumbel vs. GEV Stockholm 0.045 0.83
Héarnésand 0.15 0.70

Gumbel vs. BG Stockholm 0.14 0.93
Héarnésand 0.42 0.81

From Table 3, we note that for all situations of model comparison and at all
locations, the hypothesis of the ssmpler model (i.e. Gumbel) cannot be rejected.
From amodelling perspective, the Gumbel distribution seems adequate.

Akaike Information Criterion (AIC)

In general, it is not desirable to use too complicated models; frequently, the sim-
plest model is most likely to be correct, and one can test whether the more com-
plicated model explains the variability significantly better. To test whether one
model with a higher number of parameters models the data significantly better
than another candidate model with a lower number of parameters, we can use
the Akaike information criterion, a test statistic that penalises over-fitting. The
test statistic is given by AIC = —2InL(8) +2p, where p is the number of model
parameters.

Table 4: AIC values and parameter estimates of the different distributions.

Parameter estimate

AIC [ 6 a b €
Stockholm
BG 376.19 16.53 6.44 3:89 0:77
GEV 374.29 27.19 7.51 0:023
Gumbel 372.33 27.28 7.57
Harndsand
BG 399.94 19.17 6.50 6:43 0:56
GEV 398.21 36.16 9.36 0:048
Gumbel 396.36 36.41 9.55

In Table 4, AIC values and parameter estimates are presented. We first dis-
cuss AIC values, and note that at both locations, the Gumbel alternative has the
lowest AIC and should be preferred. Comparing BG and GEV, for both locations
GEV has the smaller AIC and should be an option rather than BG. Turning now
to parameter estimates of the shape parameter &, we observe that the estimate for
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GEV has a quite low value at both locations. To test whether & is significantly
nonzero, we use that the MLE is asymptotically normally distributed. The stan-
dard errors of the estimates are 0.13 (Stockholm) and 0.11 (Harnésand), resulting
in two-sided p-values 0.83 and 0.71, respectively. Hence, for both data sets, the
null hypothesis of & = 0 cannot be rejected. Therefore, one may argue that the
Gumbel distribution models the data equally well. A reduction would be prefer-
able here, but for the sake of comparison we will keep the GEV in the sequel.

5.4. ESTIMATION OF RETURN VALUES

In this subsection, we present estimated return values for each distribution and
the corresponding confidence intervals. The confidence intervals of the GEV and
Gumbel distribution were derived as usual with the delta method. To find approx-
imateconfidenceinterval sof theBG distribution, weused resampling methodol ogy.
Both samples were resampled 2000 times.

Table5: Return level estimates and corresponding confidence intervals.Return levelswith
95% C.I.

Return levels with 95% C.I.

T = 100 (x100) T =500 (x500) T = 1000 (x1000)
Stockholm
BG 64.3 (51.2, 78.0) 77.8 (58.5, 97.6) 83.6 (61.7, 106.0)
GEV 63.6 (46.2, 81.0) 77.3(45.4,109.2) 83.3(43.6,123.1)
Gumbel 62.0 (53.6, 70.6) 74.3 (63.2, 85.4) 79.5(67.4,91.7)
Héarnoésand
BG 85.3 (66.5, 105.9) 103.4 (74.6, 133.6) 111.2 (77.9, 145.7)
GEV 84.4 (57.6,111.1) 104.0 (52.1, 155.8) 112.9 (47.0, 178.8)
Gumbel 80.3(69.5, 91.1) 95.7 (81.6, 109.8) 102.3 (86.8, 117.9)

From Table 5, we note regarding point estimates that both GEV and BG
distributions render higher estimates of the return values compared to the Gumbel
distribution; especially for the higher 1000-year return period. Theestimatesdo not
differ largely from a practical point of view. Moreover, we see that GEV and BG
aremore conservativein estimating thereturn value. Thisisvalid for both datasets.



Satistical Sudies of the Beta Gumbel Distribution 21

Regarding confidence intervals, when comparing GEV and BG, GEV has wider
intervals. Note, though, that different methods were employed (delta method vs.
resampling). In any case, the confidence intervals are wide from an applied point
of view.

55LONGER RETURN PERIODS

Next, we investigate the behaviour of longer return periodsfor the different distri-
butions.

Estimation of longer return periodsis only meaningful if the assumption of
stationarity isvalid, but still, as arisk measure, the notion of return periods of up
10000 yearsisuseful. For instance, in dike design in the Netherlands (Botzen et a
2009), the 10000-year returnflood level isused. It could bementioned that Rootzén
and Katz (2013) propose a notion of design lifelevel in order to quantify risk ina
changing climate.

InFigures7 and 8, estimatesof thereturnvaluesfor varying return periodsare
presented, and we note e.g. that the Gumbel distribution givesthe lowest estimates
(cf.thefindingsin Table5). Moreover, the GEV rendershigher estimatescompared
to the BG distribution, which are higher the longer the return period.
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Figure 7: Return valuesfor Stockholm.
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Figure 8: Return valuesfor Hérndsand.

5.6 REMARKSON NUMERICAL COMPUTATIONS

When applying the BG to real data, we had problems finding the standard errors.
Thiswasrelated tothe cal culation of theinverseof the BG distributionfunction (i.e.
the quantile function). The formula for the quantiles given in Eg. (6) involves the
inverse of the Beta distribution function which has to be calculated numerically.
After resampling the real data 2000 times, thus yielding 2000 parameter sets of
resampled data, we encountered problems in calculating the inverse of the Beta
distribution. More precisely, for some parameter sets, it was difficult to find
quantiles g, Fg,(9) = p, for p closeto 1 since the formulawas highly sensitive to
precision errors giving us indefinite quantiles.

Asnoted, theinverseisinjective only on (0,1) and for some parameter sets,
the part of the formulainvolving the inverse of the Beta distribution yielded
us avaue of 1.0, whenever wetried to find quantilesfor p closeto 1.0. Thisis of
course not well-defined and gives quantiles that are indefinite (infinite).

All numerical computations were done in R which uses finite-precision
arithmetic which basically meansthat about up to 16 digitsare correct (or accurate)
in the computations. We therefore had to rely on an alternative software that uses
arbitrary-precision arithmetic to do the computations, meaning that any number of
precision of digits can be used. When using Mathematica (a computer algebra
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system) we found that a precision of at least 30 up to 39 digits had to be used to
perform the computations of the quantiles. (Mathematicawas used to produce the
estimatesin Table5.) Evenwith adifferenceasnegligibleas 10 (i.e.1-10%9=1),
the logarithmic function in the formulain Eqg. (6) is not defined at 1. The quantile
function also involves computation of a composition of functions (logarithmic
function within alogarithmic function). This gives large differencesin evaluating
the formula (6) for values closeto 1.

6. DISCUSSION

Wehavestudied ageneralisation of the Gumbel distribution, theBetaGumbel (BG)
distribution, which has two additional parameters that allow for skewness and
variability of the tail weights. From simulations, we found some evidence that the
BG doesindeed provide more flexibility than the Gumbel distribution.

Finding the MLEsfor the BG distribution was also in some situations tricky
since we were then faced with computational problems. For arbitrary values of a
and b, estimates could sometimes not befound (especially with b closeto 0). If this
isrelated to the curvature of thefour-dimensional function or amatter of numerical
issueisunclear. The BG distributioninvolvestheincompl ete betafunction and also
makes it more difficult to work with. The numerical problems related to the Beta
distribution have been pointed out e.g. by Cordeiro and Castro (2011), where
another generalisation of the Gumbel distribution was presented, a so-called Kw-
Gumbel.

We compared the BG to the Gumbel distribution as well as to the GEV
distributionwhenmodel ling real data. Likelihood-ratiotestsaswel | ascomparisons
by AIC were made. Since tail behaviour is of interest, the Anderson—Darling test
could be applied; however, this would have implied finding critical pointsfor the
test statistic with respect to the BG distribution, and this extra work was not
performed. It should be noted that BG, which isafour-parameter model compared
tothethree-parameter model of GEV, makesthe numerical work moreproblematic.
Optimisationinfour dimensionsishighly moredifficult thaninathreedimensional
space. We conclude that for the analysed data, the ssmpler Gumbel distribution
would be a preferred option (Tables 3 and 4).

We cannot conclude whether BG is a better candidate model to use. As has
been pointed out by Pinheiro and Ferrari (2016), theBGisnon-identifiable. Further
work hasto be doneto study this distribution and its applicability in variousfields
and contexts, but the numerical obstacles and its non-identifiability suggest that
there are other candidate distributions to investigate.
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APPENDIX: THE BETA GUMBEL DISTRIBUTION

THE BETA GUMBEL DISTRIBUTION

We here review the background of the derivation of the BG distribution, following
Nadarajah and Kotz (2004). Let G be the cumulative distribution function. Then
a generalised class of Beta distribution functions can be defined by

F(x) = Ig((a,b) (7

where Iy (a, b) is the incomplete beta ratio function. In this paper we study the
Beta Gumbel distribution in which G(x) belongs to the Gumbel distribution. The
generalization in Eq.(7) can be rewritten as

BG(x) (a7 b)

>0,b>0
Bla,p) ~ 7

IG(x) (Cl, b) =

where B(a, D) is the beta function

-1

B(a,b):/ (1= 1)V dr

0

and By (a,b) is the incomplete beta function given by

G(x)
BG(X)(ayb):/O Y1 =0bldr, a>0,b>0.

If we in Eq. (7) let G correspond to the Gumbel distribution, this gives a gener-
alisation of the original (parental) distribution G which we call the Beta Gumbel
distribution and denote BG(ut, 6,a,b). For the special case where a =1 and b = 1
the distribution coincides with the Gumbel distribution. We can now define the
probability-density function as

®
£(x) ::F’(x):;xB(; 3 /OG (1 — )P de

g(x) a—1 b-1
= G 1-G 8
Bl gy O 116U ®)
where g(x) is the density function of the parental distribution. From Eq.(8) it

follows that the density function of the Beta Gumbel distribution is given by
flx)= ;ue*“” [l—e*”]bfl —oo < x < oo )
oB(a,b) ’

for —oo < U < o0, ¢ >0,a>0,and b > 0, where u =exp{—(x—pu)/c}.
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ESTIMATION ISSUES

To find point estimates of the parameters (i,0,a,b) of the BG distribution, the
method of maximum likelihood is employed. The log-likelihood function was
given by Nadarajah and Kotz (2004) and is as follows:

InL(i,0,a,b|x)=—nlno+ (b— I)Zln [1 —exp{—exp (_Xi—ﬂ> H
i=1

(¢

K —a)_exp (_x,- —N) —nlnB(a,b).
i=1

(0 (9

n

1

1

(10)

Taking the partial first-order derivatives of Eq. (10) with respect to each parameter,
we obtain

dinL n a xXi—u
u :G_Gl.;eXp<_ c >
b—1 ¢ exp(—(xi—p)/o)exp{—exp(—(xi—p)/0)}
oL mewloew(—ti—w)/o))

I

dinL nooxi— U Xi—H
- 1— —
90 —i—; P { aexp( p >}

c
b—1 i (xi — ) exp(—(xi — p)/ o) exp{—exp(—(xi — p)/0)}

+ )
o &~ 1 —exp{—exp(—(xi—p)/0)}
JdlnL i Xi—H
3 —nl//(a+b)—nl//(a)—l;exp <— e >,

a;;L =ny(a+b)—ny(b) +§iln [1 —exp {—exp <_x";“> H -

where y is the digamma function, y(x) = dInI'(x)/dx = I"(x)/I'(x). Note that
%lnL is slightly different from the one given by Nadarajah and Kotz (2004)
which is likely due to a misprint in the original source. Estimates of u, o, a and
b are found by setting the partial derivatives to zero and solving the subsequent
simultaneous equations.
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APPENDIX: DATASETS

Table 6: Stockholm data set.

255 40.0 22.8 38.8 270 43.0 339 319
36.5 224 25.6 35.8 234 411 30.9 284
39.7 56.0 323 49.8 26.0 236 21.7 44.9
20.8 310 18.2 541 278 26.0 25.0 45.8
40.4 31.0 317 220 38.3 324 255 331
34.6 145 237 295 233 242 240 205
32.2 276 59.8

Table 7: Harnosand data set.

34.7 38.7 34.3 47.2 30.5 57.0 45.2 332
434 40.9 57.9 49.0 53.9 29.6 77.0 339
27.1 285 784 48.0 413 35.6 40.1 61.8
429 47.3 29.7 50.4 59.0 66.2 324 a47.7
40.1 50.2 395 40.0 26.0 34.5 45.8 28.4
242 272 48.3 431 314 52.9 37.2 31.0

247 43.0 34.0




