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1. INTRODUCTION

In the present article, we study the variance of eigenvalues in PCA and

MCA, i.e., the mean of squared deviations from eigenvalues to their mean.

The variance of eigenvalues can be seen as an index of departure from

sphericity. We examine the relationship between the variance of eigenvalues

and the correlations between variables in PCA or the contingency mean

square coefficients (usually denoted Φ2) between categorical variables in

MCA. This article develops the properties presented in Durand (1998).

There are few studies on the variance of eigenvalues. However, we can

find the expression of the sum of squares of eigenvalues in studies on the
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number of axes to be used for interpretation, or on confidence interval (see

e.g. Saporta, 2003; Karlis et al., 2003). The variance of eigenvalues is also

used in applications, especially in biological studies (Pavlicev et al., 2009).

2. PRINCIPAL COMPONENT ANALYSIS

In this section we study the variance of eigenvalues in the case of PCA on

correlation matrix.

2.1. BASIC PROPERTIES AND NOTATIONS

Let I denote a set of n individuals, K a set indexing p (p > 1) non–constant

variables on I; the k–th variable is denoted xk =
[
xik

]
, its mean xk and its

variance vk.

Let rkk′ be the correlation between variables xk and xk′ and R = [rkk′ ]

the correlation matrix between the p variables. The calculation method of

standard PCA is based on the diagonalization of the correlation matrix R.

Let L be a set indexing the nonnull eigenvalues. If Λ = [λ�] denotes the

diagonal matrix of eigenvalues (λ�)�∈L andA = [ak�] the matrix of eigenvec-

tors, then the PCA of variables xk writes RA = AΛ with A�
A = I. In the

simple linear regression of the standardized initial variable (xk − xk)/
√
vk

on the �–th principal variable with variance 1, the regression coefficient is

equal to the correlation coefficient rk� between the k–th initial variable and

the �–th principal variable. We have the properties:

rk� =
√
λ�ak� and

∑
�∈L

(rk�)
2 = 1.

The contribution of variable xk to the variance λ� of axis �, denoted

Ctr�k, is equal to r
2
k�/λ�, with ∀� ∈ L,

∑
k∈K

Ctr�k = 1.

If the correlation matrix has full rank (all eigenvalues are strictly posi-

tive), one has the property:

∀k ∈ K,
∑
�∈L

Ctr�k = 1. (1)

This property comes from Ctr�k = r2k�/λ� = a2k�, with
∑
�∈L

a2k� = 1 since

matrix A is orthogonal (AA
�= A

�
A = I).
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2.2. VARIANCE OF EIGENVALUES

Theorem 2.1. The variance of eigenvalues, denoted V (λ), is such that

V (λ) = 1
p

∑
k∈K

∑
k′ ∈ K
k′ �= k

r2kk′

Proof. The mean of eigenvalues is λ = 1, the variance is V (λ) = 1

p

∑
�∈L

λ2

� − 1,∑
�∈L

λ2

� being equal to the trace of matrix R
2. The entries of R

2 are equal to∑
k′∈K

rkk′rk′k′′ and the diagonal entries are (
∑

k′∈K

r2kk′ )k∈K , hence the trace of R2

is equal to
∑
k∈K

(
1 +

∑
k′ �=k

r2kk′

)
= p+

∑
k∈K

∑
k′ ∈ K
k′ �= k

r2kk′ .

This expression of the variance invites us to consider the mean of the

squared correlations between one variable and the others. As we will see

later on, this quantity is an index of the strength of the link between one

variable and the others. Hence the following definition:

Definition 2.1 (Linkage index of a variable). We call linkage index of

variable xk, denoted LIk, the mean of the squared correlations between the

variable xk and the (p − 1) others:

LIk = 1
p−1

∑
k′ ∈ K
k′ �= k

r2kk′

Note that the linkage index of a variable is between zero and one.

Proposition 1. The mean linkage index of the p variables, denoted LI, is

equal to the variance of eigenvalues divided by (p-1):

LI = 1
p−1V (λ)

Comment. The mean linkage index is a measure of both the global mag-

nitude of correlations and of the departure from sphericity. In the particu-

lar case of an equicorrelation matrix, all off–diagonal elements of which are

equal to r (Morrison, 1976, p. 331), the mean linkage index is equal to r2.

.

.

.
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2.3. VARIABLES AND EIGENVALUES

From now on, we assume that the correlation matrix has full rank.

We will now express the linkage index of a variable as a function of the

eigenvalues and the contributions of this variable to axes.

Considering the contributions of the initial variable xk to axes (namely

(Ctr�k)�∈L with
∑
�∈L

Ctr�k = 1, see Equation 1), we define the weighted mean

(λ̂k) and the weighted variance (V̂k(λ)) of eigenvalues:

λ̂k =
∑
�∈L

Ctr�k λ� and V̂k(λ) =
∑
�∈L

Ctr�k(λ� − λ̂)2

The following two properties can easily be shown:

∀k ∈ K, λ̂k = 1 and V̂k(λ) =
∑
�∈L

λ�r
2
k� − 1

Theorem 2.2. The linkage index of variable xk is proportional to V̂k(λ):

LIk = 1
p−1 V̂k(λ)

Proof. By the reconstitution formula of the correlation matrix (see Le Roux and
Rouanet, 2004, p. 153), one has R = AΛA

�, hence R
2 = AΛ

2
A

�. The k–th
diagonal entry of R2 is equal to

∑
k′∈K

r2kk′ = 1+
∑
k′ �=k

r2kk′ (see the proof of Theorem

2.1) and also to
∑
�∈L

λ2

�a
2

k� =
∑
�

λ�r
2

k� (since rk� =
√
λ�ak�). Hence

∑
�∈L

λ�r
2

k� =

V̂k(λ) + 1 = 1 +
∑

k′ ∈ K
k′ �= k

r2kk′ .

Corollary 2.2.1. The ratio of the linkage index of variable xk and the mean

linkage index is equal to the ratio of the weighted variance of eigenvalues

V̂k(λ) to the variance of eigenvalues V (λ):

LIk

LI
=

V̂k(λ)

V (λ)

Comments

1) The more the linkage index of a variable is superior to the mean, the

more this variable contributes to extreme axes (first and last axes).

2) The more the linkage index of a variable is inferior to the mean, the

more this variable contributes to central axes (axes with variance near 1).

.

.

.

.
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2.4. APPLICATION TO SPEARMAN’S DATA

Table 1 (see Spearman, 1904, p.291) gives the correlations between perfor-

mance variables of English pupils in the following subjects: Classics (k1),

French (k2), English (k3), Mathematics (k4), Pitch Discrimination (k5),

and Music (k6).

Table 1: Correlations, linkage indexes LIk and ratios LIk/LI.

k1 k2 k3 k4 k5 k6 LIk LIk/LI

k1 Classics 1 0.83 0.78 0.70 0.66 0.63 0.524 1.34
k2 French 0.83 1 0.67 0.67 0.65 0.57 0.467 1.20
k3 English 0.78 0.67 1 0.64 0.54 0.51 0.404 1.04
k4 Mathematics 0.70 0.67 0.64 1 0.45 0.51 0.362 0.93
k5 Pitch discrim. 0.66 0.65 0.54 0.45 1 0.40 0.302 0.78
k6 Music 0.63 0.57 0.51 0.51 0.40 1 0.280 0.72

LI = 0.390

We notice (see Table 1) that Classics is the most correlated with other

variables with a linkage index equal to 0.524, which is 34% higher than the

average. As we can see in Table 2, this variable is the one that contributes

the most to axes �1 and �6, for which variances are the farthest from 1

(“extreme” axes). In sharp contrast, Music is the least correlated with other

variables (linkage index equal to 0.280) and contributes heavily to axes �2

and �3, for which variances are the closest to 1 (“central” axes).

Table 2: Eigenvalues λ�, contributions of variables to axes (in %),

variance of eigenvalues weighted by contributions V̂k(λ) and variance

ratios V̂k(λ)/V (λ).

�1 �2 �3 �4 �5 �6

λ� 4.103 0.619 0.512 0.357 0.270 0.139 V̂k(λ) V̂k(λ)/V (λ)
k1 21 0 0 2 7 70 2.62 1.34
k2 19 1 0 5 54 20 2.33 1.20
k3 17 0 12 59 4 9 2.02 1.04
k4 16 6 31 32 14 0 1.81 0.93
k5 13 51 15 2 18 0 1.51 0.78
k6 13 41 42 0 3 1 1.40 0.72

V (λ) = 1.95

Table 1: Correlations, linkage indexes LIk and ratios LIk/LI.
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3. MULTIPLE CORRESPONDENCE ANALYSIS

We will now adopt the same approach for MCA.

3.1. BASIC PROPERTIES AND NOTATIONS

Let I denote the set of n individuals and Q the set of categorical variables

(questions). The table analyzed by mca is an I×Q table such that the

entry in cell (i, q) is the category of variable q chosen by individual i. The

set of categories of variable q is denoted by Kq and its cardinal by Kq; the

overall set of categories is denoted by K and its cardinal by K.

The number of individuals who have chosen category k is denoted by

nk (with nk > 0) and the corresponding relative frequency by fk = nk/n.

Multiple correspondence on I×K. Let us denote δIK = (δik)i∈I,k∈K
the multiple correspondence on I×K defined by

δik =

{
1
0

if individual i has chosen category k
if not

Performing the mca of the I×Q table is equivalent to proceeding to

Correspondence Analysis of the I×K table δIK (Benzécri, 1977; Greenacre,

1984). The solution is given by the diagonalization of the symmetric matrix

S = [skk′ ] with skk′ =
1
Q

nkk′−nknk′/n√
nknk′/n

(nkk′ is the number of individuals who

have chosen both categories k and k′).
We denote L the set indexing the K−Q nonnull eigenvalues and (yk� )�∈L

the principal coordinates of the category point k. The sum of eigenvalues

(λ�)�∈L is equal to (K − Q)/Q, hence the mean is λ = 1/Q.

Burt table and mean square contingency coefficients. The Burt

table associated with δIK is the symmetric K×K table defined by:

bkk′ =
∑
i∈I

δik δik′ =




nk if k = k′

0 if k �= k′ with k, k′ ∈ Kq

nkk′ if k ∈ Kq and k′ ∈ Kq′ with q �= q′

Denoting Φ2
qq′ the mean square contingency coefficient of the contin-

gency table crossing variables q and q′, one has: Φ2
qq = Kq − 1 and for q′ �= q,

Φ2
qq′ =

∑
k∈Kq

∑
k′∈Kq′

(fkk′−fkfk′)
2

fk fk′
.

The Φ2 of the Burt table, denoted Φ2
Burt, is the average of the Φ

2 of

the Q2 subtables of the Burt table. Denoting Φ
2
the mean of the Φ2 of the

.

.
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Q(Q − 1) non–diagonal subtables, one has:

Φ2
Burt =

1
Q2

∑
q∈Q

∑
q′∈Q

Φ2
qq′ =

1
Q

(
K−Q

Q
+ 1

Q

∑
q∈Q

∑
q′∈Q
q′ �= q

Φ2
qq′

)
= 1

Q
K−Q

Q
+ Q−1

Q
Φ
2

Contributions of categories and of variables. The squared distance

between the category point k and the mean point of the cloud is equal to
1−fk
fk

=
∑
�∈L

(yk� )
2.

The contribution of category k to axis �, denoted Ctr�k, is equal to
fk
Q

(yk
�
)2

λ�
. We have the two following properties:

∀� ∈ L,
∑
k∈K

Ctr�k = 1 and ∀k ∈ K,
∑
�∈L

Ctr�k = 1− fk

The first property follows the definition of contribution to axes. The second

one can be proven as follows: The �-th unit eigenvector of S associated

with nonnull eigenvalue λ� is (ck�)k∈K with ck� =
√
fk/Q(yk� /

√
λ�) and the

Q ones associated with null eigenvalue are (ckq)q∈Q with ckq =
√
fk for

k ∈ Kq and 0 for k /∈ Kq. Hence
∑
�∈L

c2k� +
∑
q∈Q

c2kq =
fk
Q

∑
�∈L

(yk
�
)2

λ�
+ fk = 1.

By definition, the contribution of a variable to axis � is the sum of

the contributions of its categories: Ctr�q =
∑

k∈Kq

Ctr�k, and we have the two

following properties:

∀� ∈ L,
∑
q∈Q

Ctr�q = 1 and ∀q ∈ Q,
∑
�∈L

Ctr�q = Kq − 1

Burt cloud. The mean point of the subcloud of individuals who have

chosen category k is called category mean point. Its profile (obtained from

the Burt table) is equal to 1
Q(fkk′/fk)k′∈K ; its squared distance to the

mean point is equal to
∑

k′∈K
1

Q2

(fkk′/fk−fk′)
2

f ′

k
/Q = 1

Qfk

∑
k′∈K

(fkk′−fkfk′)
2

fkfk′
. Let-

ting φ2
q′(k) =

∑
k′∈Kq′

(fkk′−fkfk′ )
2

fkfk′
if k ∈ Kq and q

′ �= q, the squared distance

writes:

1
Qfk

(1− fk) +
1

Qfk

∑
q′∈Q
q′ �= q

φ2
q′(k), with Φ2

qq′ =
∑

k∈Kq

φ2
q′(k) (2)

.

.

.

.
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The K category mean points define the Burt cloud (see Le Roux and

Rouanet, 2004, pp. 199-200). The principal coordinates of the category

mean point k on axis � are equal to yk� /
√
λ�, hence its squared distance to

the mean point is also equal to
∑
�∈L

(yk� )
2/λ�.

The eigenvalues verify the following property:
L∑

�=1

λ2� = Φ2
Burt.

3.2. VARIANCE OF EIGENVALUES

Theorem 3.1. The variance of eigenvalues, denoted V (λ), is such that:

V (λ) = 1
K−Q

Q−1
Q

Φ
2

Proof. 1
K−Q

∑
�∈L

(λ�−λ)2 = 1
K−Q

Φ2
Burt−λ

2
with λ = 1/Q. Hence the variance

is V (λ) = 1
K−Q

(
1
Q

K−Q
Q

+ Q−1
Q

Φ
2)− 1

Q2 .

This expression of the variance of eigenvalues leads us to consider the

mean of the Φ2 between one categorical variable and the others, that is, it

leads us to the following definition.

Definition 3.1 (Linkage index of categorical variable). The linkage index

of categorical variable q, denoted LIq, is such that:

LIq =
1

Kq−1

(
1

Q−1

∑
q′∈Q,q′ �=q

Φ2
qq′

)

Note that the linkage index of a categorical variable is between zero

and one, since Φ2
qq′ ≤ Kq − 1.

Property 1 (Mean linkage index). The mean linkage index of the Q cate-

gorical variables weighted by (Kq − 1)q∈Q, denoted LI, is such that:

LI = Q2

Q−1 V (λ) = Φ
2
/(K−Q

Q
)

Proof.
∑
q∈Q

(Kq − 1) = K − Q, hence the weighted mean of linkage indexes is

1
K−Q

∑
q∈Q

(Kq − 1)LIq =
1

K−Q

∑
q∈Q

1
Q−1

∑
q′∈Q,q′ �=q

Φ2
qq′ =

Q2

Q−1V (λ).

.

.

.
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Definition 3.2 (Linkage index of category). Given a category k of the

categorical variable q, the linkage index of category k, denoted LIk, is defined

as follows:

LIk = 1
1−fk

× 1
Q−1

∑
q′∈Q,q′ �=q

φ2
q′(k)

with for q′ �= q, φ2
q′(k) =

∑
k′∈Kq′

(fkk′−fkfk′ )
2

fkfk′
.

One deduces from
∑

k∈Kq

φ2
q′(k) = Φ2

qq′ that the linkage index of variable

q is equal to the mean of the linkage indexes of its categories weighted by

(1− fk)k∈Kq
: LIq =

1
Kq−1

∑
k∈Kq

(1− fk)LIk.

3.3. CATEGORIES, CATEGORICAL VARIABLES AND EIGENVAL-
UES

In order to explain the link between categorical variables or categories and

eigenvalues, we will now express the linkage indexes in terms of eigenvalues

weighted by contributions to axes.

Lemma 3.1. The mean of eigenvalues weighted by the contributions of

category k to axes, denoted λ̂k, is equal to 1/Q.

Proof. λ̂k =
∑
�∈L

Ctr�k λ�/(
∑
�∈L

Ctr�k) = 1
1−fk

fk
Q

∑
�∈L

(yk� )
2 = 1

1−fk

fk
Q

1−fk
fk

= 1
Q
.

Lemma 3.2. The variance of eigenvalues weighted by the contributions of

category k of variable q to axes is denoted V̂k(λ) and called k–variance of

eigenvalues; it is equal to 1
Q2(1−fk)

∑
q′∈Q,q′ �=q

φ2
q′(k).

Proof. The weighted sum of the squared eigenvalues is equal to
∑
�∈L

fk
Q (yk� )

2λ� =∑
�∈L

fk
Q

( yk
�√
λ�

)2
= fk

Q

[
1

Qfk
(1 − fk) +

1
Qfk

∑
q′ �=q

φ2
q′(k)

]
(Equation 2). Hence

V̂k(λ) =
1

Q2

[
(1− fk) +

∑
q′ �=q

φ2
q′(k)

]
/(1− fk)− 1

Q2 = 1
Q2(1−fk)

∑
q′ �=q

φ2
q′(k).

Theorem 3.2. The linkage index of category k is proportional to the vari-

ance of eigenvalues weighted by contributions of k to axes.

LIk = Q2

Q−1 V̂k(λ).
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Proof. V̂k(λ) =
Q−1
Q2

[
1

(Q−1)(1−fk)

∑
q′ �=q

φ2
q′(k)

]
=

Kq−1

Q2 LIk.

From Property 1 and Property 3.2 we deduce that:

Corollary 3.2.1. The ratio of the linkage index of category k to the mean

linkage index is equal to the ratio of the k–variance of eigenvalues to the

variance of eigenvalues:

LIk

LI
=

V̂k(λ)

V (λ)

The properties about categorical variables follows the property of aver-

age of linkage indexes of categories (LIq =
1

Kq−1

∑
k∈Kq

(1− fk)LIk) and of the

property of sum of contributions (Ctr�q =
∑

k∈Kq

Ctr�k). We denote V̂q(λ) the

q–variance of eigenvalues (variance of eigenvalues weighted by the contribu-

tions of variable q): V̂q(λ) =
1

Kq−1

∑
�∈L

Ctr�q(λ� − 1
Q
)2. One has the following

property: LIq =
Q2

Q−1 V̂q(λ). Hence:

LIq

LI
=

V̂q(λ)

V (λ)

Comments

1) The more the linkage index of a category (or a categorical variable) is

superior to the mean, the more this category (or this variable) contributes

to extreme axes (first and last axes).

2) The more the linkage index of a category (or a categorical variable)

is inferior to the mean, the more this category (or this variable) contributes

to central axes (axes with variance near 1/Q).

3.4. APPLICATION TO BURT’S DATA

Burt’s data (Table 3), reproduced from Burt (1950, p.171), gives, for 100

individuals (men living in Liverpool), the observed response patterns and

their absolute frequencies for four attributes (categorical variables), that

is, A Hair (a1: fair, a2: red, a3: dark), B Eyes (b1: light, b2: mixed, b3:

brown), C Head (c1: narrow, c2: wide), D Stature (d1: tall, d2: short).

As we can see in Table 4, the categories having the highest linkage in-

dexes are the category b1 (light) of Eyes and the two categories of Stature.

.

.
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Table 3: Observed response patterns with their absolute frequencies.

Abs.freq

a1b1c1d1 8

a1b1c1d2 4

a1b1c2d1 2

a1b2c1d1 1

a1b2c1d2 1

a1b2c2d1 2

a1b2c2d2 2

a1b3c2d2 2

Abs.freq

a2b1c1d1 6

a2b1c2d1 2

a2b2c1d1 2

a2b2c1d2 1

a2b2c2d2 2

a2b3c1d2 2

a1 a2 a3 b1 b2 b3 c1 c2 d1 d2
22 15 63 33 36 31 69 31 43 57

Abs.freq

a3b1c1d1 9

a3b1c2d1 2

a3b2c1d1 3

a3b2c1d2 12

a3b2c2d1 2

a3b2c2d2 8

a3b3c1d1 1

a3b3c1d2 19

a3b3c2d1 3

a3b3c2d2 4

Table 4: Eigenvalues λ�, linkage index LIk, ratio LIk/LI and contribu-
tions of categories to axes (in %).

�1 �2 �3 �4 �5 �6
λ� 0.489 0.299 0.254 0.206 0.179 0.073

LIk LIk/LI
a1 fair .054 0.63 9 5 36 1 23 5
a2 red .027 0.31 6 0 55 4 20 0
a3 dark .099 1.14 9 1 0 0 25 2
b1 light .211 2.42 26 2 1 0 1 36
b2 mixed .037 0.43 3 26 5 24 0 5
b3 brown .093 1.07 12 16 2 23 3 14
c1 narrow .020 0.23 0 15 0 14 0 1
c2 wide .020 0.23 1 34 0 31 1 2
d1 tall .170 1.95 20 0 0 2 16 20
d2 short .170 1.95 15 0 0 1 12 15

LI = 0.087

Table 5: Eigenvalues λ�, linkage index LIq, ratio LIq/LI and contribu-
tions of categorical variables to axes (in %).

�1 �2 �3 �4 �5 �6
λ� 0.489 0.299 0.254 0.206 0.179 0.073

LIq LIq/LI
q1 Hair .051 0.59 23 6 91 5 67 7
q2 Eyes .115 1.32 41 45 8 47 4 55
q3 Head .020 0.23 1 49 0 45 1 3
q4 Stature .170 1.95 34 0 0 3 28 35

LI = 0.087
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Their linkage indexes are about twice the mean (LIb1/LI = 2.42 and LId1/LI =

LId2/LI = 1.95). These three categories contribute heavily to “extreme”

axes �1 and �6 (together, they account for 61% of axis 1 and 71% of

axis 2). In contrast, both categories of Head and the category a2 (red)

of Hair have the smallest linkage indexes, less than a third of the mean

(LIc1/LI = LIc2/LI = 0.23 and LIa2/LI = 0.31). The contributions of these

three categories to both “extreme” axes (�1 and �6) are very small (7% and

3%, respectively) but they contribute heavily to “central” axes �2, �3 and

�4 (49%, 55% and 50%, respectively).

In Table 5, we see that Head has a very small linkage index; this variable

does not contribute to the first axis (neither to the 5th and the 6th axes).

4. CONCLUSION

In this paper, we emphasize that the higher the mean of the linkage indexes

of (numerical or categorical) variables, the higher the variance of eigenval-

ues, that is, the larger the departure of clouds from sphericity.

In addition, further analysis shows that the more the linkage index of

a variable is superior to the mean, the more this variable contributes to

extreme axes (first and last axes); otherwise this variable contributes to

central axes (whose variances are close to the mean). So, if the range of

linkage indexes of variables is large, one can predict that the variables with

the greatest linkage indexes will play a preponderant role in the interpreta-

tion of first axes. Then, if we decide to reduce the number of active variables

in the analysis, linkage indexes will be a useful tool: if a variable with a

weak linkage index is discarded, the proportion of variance associated with

the first axes will increase and the interpretation will remain the same.
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