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Posterior risk.

1. INTRODUCTION

Mixture models express complex situations than the simpler ones and have been
used in almost every fields of statistical sciences to model diverse populations.
Mixtures models have been well practiced in many fields such as engineering,
economics, marketing, astronomy, psychiatry, medicine, biology etc. Mixture
distributions apply when a statistical population contains two or more sub populations.
So, mixture densities can be used to model a statistical population with
subpopulations. Mixture components are the densities of the subpopulations and
weights present the proportion of each subpopulation in the complete population.
Sindhu et al. (2014) studied Bayesian analysis of the shape parameter of the mixture
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of Burr type X distribution using the censored data.Gosh and Ebrahimi (2001) have
studied the Bayesian analysis of the mixing function in a mixture of two exponential
distributions. Saleem and Aslam (2009) presented a comparison study of the
maximum likelihood estimates with the Bayes estimates assuming the uniform and
the Jeffreys priors for the parameters of the Rayleigh mixture. Sindhu et al. (2014)
considered the Bayesian inference for a mixture of Burr type II distribution under
type-I censoring. Saleem et al. (2010) considered the Bayesian analysis of the
mixture of Power function distribution using the complete and the censored sample.
Sultan et al. (2007) investigated the properties of the two component mixture of
inverse Weibull distribution under classical approach. With highly realiable com-
ponents, it is unusual if all the components have failed by the end of the time alloted
for the test. When all subjects are scheduled to begin the study at the same time and
end the study at the same time type I censoring occurs. Type I censoring is usually
used in survival studies and in some engineering studies.

The exponential distribution is the most widely used lifetime model in
reliability theory, because of its simplicity and mathematical feasibility.Gupta et al.
(1999) considered a three-parameter distribution when the location parameter is not
present. Alshingiti (2009) have proposed two parameters generalization
invertedexponential distribution.Singh et al. (2013) have proposed the use of IED
in survival analysis.Abouammoh and Alshingiti (2009) have discussed many
properties and reliability characteristics of generalization invertedexponential
distribution. Assuming it is a good lifetime model, they also discussed the
maximum likelihood and least square methods for the estimation of the unknown
parameters of a generalized inverted exponential distribution. Krishna and Kumar
(2012) have studied the reliability estimation based on progressive type-II censored
sample under classical setup. They proposed maximum likelihood estimation and
least square estimation procedures. Dey and Pradhan (2014) derived maximum
likelihood estimators of the unknown parameters and the expected Fisher’s
information matrix of the generalized inverted exponential distribution and obtained
Bayes estimation under the squared error loss function. These Bayes estimates were
evaluated by applying Lindley’s approximation method, the importance sampling
procedure and Metropolis–Hastings algorithm. Oguntunde and Adejumo (2015)
proposed a two parameter Inverted Generalized Exponential (IGE) and a three
parameter Generalized Inverted Generalized Exponential (GIGE) probability models
as generalizations of the one-parameter. They explored the statistical properties of
the GIGE distribution and its parameters were estimated for both censored and
uncensored cases using the method of maximum likelihood estimation (MLE).
Dube et al. (2016) derived maximum likelihood estimators of unknown parameters
and reliability characteristics of generalized inverted exponential distribution using
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progressive first-failure censored samples.
The aim of present study is to investigate the prominent features of the mixture

of generalized inverted exponential distributions. This mixture has not been
considered earlier in the literature through Bayesian structure to the best of our
knowledge. The rest of the paper is organized as follows. In Section 2, we define
the mixture model, its properties and likelihood function of mixture of generalized
inverted exponential distributions. Inferential procedures with Bayesian estimation
are considered for the set of parameters in Section 3, which include the posterior
distribution, Bayes estimators and posterior risks under different loss functions. In
Section 4, simulation study and comparison of the estimates are given.A real life
mixture of generalized inverted exponential distributions is considered in Section
5. Conclusions are reported in Section 6.

2.  MIXTURE MODEL AND ITS PROPERTIES

A finite mixture distribution with m-component densities of specified parametric
form and unknown mixing weight p1 is given by:
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where λ and α are scale and shape parameters, respectively. Thus, the said mixture
model is of the form:
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The distribution function of the correspondingmixture distribution is:
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Graphical representations of different selected parametric values for the
mixture model are shown in Fig. 1.
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Fig. 1:   Density function components and their mixtures p1 1 2 1 2, , , ,λ λ α α( )(i) (0.4, 2, 11, 3, 10 ),

(ii) (0.3, 3, 8, 13, 16 ), (iii) (0.3, 0.5, 5, 2, 10), (iv) (0.3, 3, 1, 4, 2 ), (v) (0.4, 5, 3, 6, 9 )
and (vi) (0.4, 4, 2,1, 2 ).

(i) (ii)

(iii) (iv)

(v) (vi)
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(a) Reliability function
The reliability function or survival function of two components mixture of a

generalized inverted exponential distribution is given by:
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(b) Failure rate function
The failure rate function (hazard rate function) of the two components mixture

of generalized inverted exponential distribution is given by:
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which can be written considering the result of Al-Hussaini and Sultan (2001) as the
derivative of hazard rate function is given as r(t)=h(t)r1(t)+{1– h(t)} r2(t). The
derivative of hazard rate function is given as
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The failure rate function of two components mixture of a generalized inverted
exponential distribution increases initially, then decreases and eventually approaches
to zero. This means that items with generalized inverted exponential distribution
have a higher chance of failing as they survive for some period of time, but after
survival to a specific age, the probability of failure decreases as time increases. The
hazard rate function components and their mixtures are shown in Figure 2.
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Fig. 2 Hazard rate function components and their mixtures p1 1 2 1 2, , , ,λ λ α α( ) (i) (0.3, 3, 1, 4, 2

), (ii) (0.4, 5, 3, 6, 9 ), (iii) (0.4, 4, 2,1, 2 ), (iv) (0.4, 2, 11, 3, 10 ), (v) (0.3, 3, 8, 13, 16 )
and (vi) (0.3, 0.5, 5, 2, 10).

(i) (ii)

(v) (vi)

(i) (ii)

(c) Analysis of failure rate curves: We assume that t t t t t t1 1 2 2 1 2= ( ) = ( )min , max ,* * * * and 

where t ii
* ,=( )1 2  be the mode of the density function. It is analyzed that both

densities in the numerator of ri(t) enhance on (0,t1), while the denominator
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decreases on the same interval. Hence r(t) is an increasing function on the interval
(0, t1). Likewise, r(t) →0, when t approaches 0. Two cases exist within the interval
(t1, ∞) named as (i) Unimodal and (ii) Bimodal.

(i) Unimodal case: Suppose that the maximum point of the failure rate mixturet is
t*.  The difference between r1(t) and r2(t) on the interval (t1, t

*) is sufficiently small
that the first two terms of r´(t) influence the third term and hence r´(t)>0 on the
aforementioned interval. Overall the failure rate of the mixture model is an
increasing function on (0, t*) and a decreasing function on (t*, ∞) and approaches
zero when t →0 Figs. 2(i-iii).

(ii) Bimodal case: The smaller and larger maximum points of the failure rate
mixture are denoted by t*, and t** respectively. The failure rate mixture model is an
increasing function on the intervals (0, t*) and (t*** , t** ), while it decreases on the
intervals (t*, t*** ) and (t**, ∞), tends to zero as t → ∞, Figs. 2(iii-vi).

(d) Median and Mode: The median and mode of the two components mixture of
generalized inverted exponential distributionare developed by solving the nonlinear
equation with respect to t.
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Tab. 1: Mean median and mode for the two-component mixture of a generalized inverted
exponential distribution.
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) Mean Median Mode

0.2, 3, 1, 4, 2 1.51679 0.96429 0.73278 0.2, 2, 11, 3, 10 3.91200 3.64310 0.817301, 3.33153

0.4, 3, 1, 4, 2 1.64729 1.14314 0.83342 0.4, 2, 11, 3, 10 3.36552 3.05082 0.81462, 3.14220

0.6, 3, 1, 4, 2 1.77779 1.32297 0.85582 0.6, 2, 11, 3, 10 2.81905 2.20966 0.813773, 2.00589

0.2, 5, 3, 6, 9 1.54266 1.27953 0.98166 0.2, 0.5, 5, 2, 10 1.75989 1.65276 1.53242, 2.39757

0.4, 5, 3, 6, 9 1.81044 1.46550 1.02989 0.4, 0.5, 5, 2, 10 1.49321 1.36582 1.48871, 2.94723

0.6, 5, 3, 6, 9 2.07823 1.71812 1.14851 0.6, 0.5, 5, 2, 10 1.22652 0.87747 1.37289, 3.49239

The parametric values (p
1
, λ

1
, λ

2
, α

1
, α

2
)  in Table 1 are chosen to show the

unimodal and bimodal cases for the mixture density function for some parameter
values. The increasing order of mean, median and mode are observe in the unimodal
case when the mixing proportion parameter p

1 
increases. On the contrary, for

bimodal case when mixing proportion parameter  p
1 
increases, inverse behavior has

been noted for mean, median and mode.
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Suppose the n units from the above cited mixture model are used in life testing
experiment with a fixed test termination time T. After the test has been performed,
it is observed that out of n units, r units have failed till the test termination time T,
while n-r units are still working. Following the sampling scheme proposed by
Mendenhall and Hader (1958), in many real life situations only the failed items
can be identified as the members of the first and the second subpopulation
respectively. Here it is clear that r = r1 + r2 and the remaining n-r units that are
still functioning provide no information about the population to which they
belong. Let xij be defined as the failure time of the jth unit from ith subpopulation,
where j = 1, 2…, ri,  i = 1, 2, 0 < x1j, x2j ≤ T.
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The likelihood function has the following form:
Assuming the shape parameter to be known, the likelihood function (2)

reduces to
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3.  BAYESIAN ESTIMATION OF PARAMETERS

In this section, we discuss prior distributions for unknown parameters, loss
functions and Bayes estimators and their posterior risks.

3.1 BAYESIAN ESTIMATION USING INFORMATIVE PRIOR

The Bayesian analysis requires the choice of suitable priors for the unknown

parameters in addition to the experimental data. The main objective in this bond

is the relationship between the prior distribution and the loss function. The mixture

model under consideration has two scale parameters and one mixing proportion

parameter. We consider both the informative and noninformative priors. First, we

assume that scale parameter λ
i
, i = 1, 2, has independent gamma priors with the
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The marginal distribution of λ
1
 is simply the probability distribution of  λ

1
 that

neglects other nuisance information about λ
2
 and p

1
 which is obtained by

integrating the joint probability distribution with respect to other parameters as:
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Similarly, the marginal posterior distribution of λ2 and p1are derived as:
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3.2 BAYESIAN ESTIMATION OF THE MIXTURE MODEL ASSUMING THE
NONINFORMATIVE PRIORS

The noninformative priors are a significant part of a Bayesian tool kit. The
noninformative priors have a limited effect on the ultimate inference comparative
to the data.  Bernardo (1979) contended that a noninformative prior should be
considered as a reference prior, i.e., a prior that is favourable for use as a standard
when scrutinize statistical data. The most common example of noninformative
prior is uniform prior that is employed when no conventional prior information is
available.

3.2.1 POSTERIOR DISTRIBUTION USING UNIFORM PRIOR

The uniform prior for the unknown parameter λi  can be written as λi:Uniform (0, ∞),
i = 1,2. We suppose a priori that (λi, p1

) are independent and also assume that
p

1
~Uniform (0,1). Thus the joint prior distribution of  (λi, p1

) is  p(λi,p1
) ∝  k. We

obtain the joint posterior distribution merging the likelihood function given in (3)
with uniform prior information as:
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Marginal distributions of λi and p1can be obtained by hazardous nuisance
parameters. For space restriction, we do not present the expression for the marginal
distributions under noninformative priors.

3.3 BAYESIAN ESTIMATORS UNDER DIFFERENT LOSS FUNCTIONS

In order to take an optimum decision, a suitable loss function must be specified. The
choice of a loss function is a difficult job: its selection is often based on the reasons
of mathematical convenience without any particular reason of ongoing interest
excluding cost effect. As in risk analysis, the potentiality of undesired events and
its consequences are explored. This potentiality is usually measured through failure
rate. In disastrous outcomes, it can be difficult to underestimate the potentiality of
an event rather than to overestimate it. This is significant when the risk level is the
basis of a risk reducing initiative, either by reducing the potentiality or the
consequences of the event. It is unreasonable to use a loss function that allows the
estimation of a failure probability of zero.  A positive loss at the origin allows the
estimation of zero and in risk analysis estimating a zero failure probability simply
means that no risk is expected (for further details see Norstrom (1996)). Five loss



Mixture of two Generalized Inverted Exponential Distributions with Censored:  … 383

functions are used to obtain the Bayes estimators along with posterior risks, i.e.,the
squared error (SE) loss function, weighted squared error (WSE) loss function,the
precautionary (P) loss function and quadratic (Q) loss function, modified squared
error (MSE) loss function. The most commonly used loss function is (SE) loss

function defined by L SE1

2
= −( )ˆ ,θ θ where ̂θSE

 is a decision rule to estimate parameter

θ. The Bayes estimator under SE loss function is θ̂ θSE E= ( )| x  and posterior risk

under SE loss function is ρ θ θ θˆ .
SE

E E( ) = ( ) − ( ){ }2 2
|x x|  The weighted squared

error (WSE) loss function which is of concern is L WSE2
1

2
= −( )−θ θ θ̂ , the Bayes

estimator under WSE loss function  is θ̂ θWSE E= ( ){ }− −1 1
| x  and posterior risk under

WSE loss function is ρ θ θ θˆ .WSE E E( ) = ( ) − ( ){ }− −
| |x x1 1

 Norstrom (1996) has

introduced a precautionary loss function and is  defined as L p p3

2
1= −( ) −θ θ θˆ ˆ ,  where

θ̂p   is a decision rule to estimate parameter  θ. The Bayes estimator under P loss

function is θ̂ θp E= ( )2 | x  and posterior risk under P loss function is

ρ θ θ θˆ .p E E( ) = ( ) − ( ){ }2 2 | x x|  The quadratic loss function which is defined as

L
Q4

1
2

1= −( )−θ θ̂  the Bayes estimator and posterior risk under Q loss function are
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| |x x

The modified squared error (MSE) loss function was introduced by Degroot

(1970), which is of concern is L MSE5
2

2
= −( )−θ θ θ̂ . The Bayes estimator under

MSE loss function is θ̂ θ θMSE E E= ( ){ } ( ){ }− −
| |x x

1 2 1
 and posterior risk under

MSE loss function is ρ θ θ θˆ ,MSE E E( ) = − ( ){ } ( ){ }−
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1 2| |x x
 
where E denotes the

expectation with respect to the posterior distribution of θ.  Thus the posterior

expectation of any function of parameter, say U pλ λ1 2 1, ,( )  can be written as:
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However, it is not possible to evaluate estimates of set of parameters
analytically. The estimates are not in a closed form and therefore must be evaluated
numerically.
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4. SIMULATION AND COMPARISON OF THE ESTIMATORS

In this section, a Monte-Carlo simulation study is conducted to analyze the behavior
of the  proposed estimators for different sample sizes, different priors, different

parametric values λ λ1 2 11 3 4 2 0 3, , , , , . .   =30,    ( ) ∈ ( ) ( ) ∈T p Samples of size n = 30,

60 and 90 were generated from the two components  mixture of generalized inverted
exponential distribution. A well-known procedure in simulation for computer
generation of random variables is the inverse transform method. This method
provides the most straight forward procedure to generate samples of a given
distribution when its quantile function exists in closed form. Probabilistic mixing
is used to generate the mixture data. To generate the mixture model, a random
number ‘u’ is generated from the uniform distribution on (0, 1). If u < p1 the
observation is taken randomly from F1 (the generalized inverted exponential
distribution with parameter λ1) and if u > p1the observation is taken randomly from
F2(the generalized inverted exponential distribution with parameter λ2). The values
of hyperparameters (a1, b1, a2, b2) have been selected in such a manner that the prior
mean becomes the expected value of the corresponding parameter.The
hyperparameters considered in the simulation study are (3, 3, 6, 2) and (8, 2, 6, 3).
All observations that exceed T are treated as censored. For each of the combinations
of parameters, sample sizes, we generated 1000 samples using Mathematica. For
each of 1000 samples, the average of these estimates and corresponding posterior
risks are reported in Tables 2 to 6.

( )1 2 1
, , pλ λ∆ =  Uniform prior Gamma prior 

(1, 3, 0.3) n  
1

λ̂  
2

λ̂  1
p̂  

1
λ̂  

2
λ̂  1

p̂  

 30 1.41443 

(0.36065)

3.25745 

(0.61236)

0.33289 

(0.22065)

1.19979 

(0.17501)

2.89802 

(0.54072)

0.32238 

(0.00833)

60 1.22456 

(0.16124)

3.12897 

(0.38122)

0.31065 

(0.21319)

1.18172 

(0.12254)

2.93128 

(0.32102)

0.32171 

(0.00454)

90 1.10321 

(0.13380)

3.12413 

(0.28908)

0.30388 

(0.21091)

1.03935 

(0.06873)

3.06832 

(0.26240)

0.31354 

(0.00293)

(4, 2, 0.3) 30 3.45942 

(0.96688)

2.3256 

(0.43184)

0.32558 

(0.21705)

3.66342 

(0.63912)

2.19192 

(0.29419)

0.29943 

(0.00888)

60 3.76376 

(0.64305)

2.02452 

(0.19458)

0.32277 

(0.21682)

3.73881 

(0.51512)

1.96942 

(0.15062)

0.31083 

(0.00502)

90 3.82385 

(0.57066)

2.01386 

(0.17440)

0.29204 

(0.20557)

3.89622 

(0.44599)

1.97576 

(0.10626)

0.30057 

(0.00338)

Tab. 2: Bayes estimates and their posterior risks in parentheses under SE loss function for
α1 = α2 = 0,5
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The analysis of Tables 2 to 6, leads to the following conclusions: The foremost
point that requires attention is that the estimated risks of estimatorsdecrease as
sample size increases. Bayesian estimates become very close to the true values of
the parameters as we increase the sample size. With a large parametric value, the
corresponding posterior risk is a high. Bayes estimators performed well under the
mean squared error loss function than the rest loss functions. Bayes estimates are
found to be underestimated under Q loss function based on both priors. Bayes
estimators are efficient under MSE loss function; In fact, the use of mean squared

( )1 2 1
, , pλ λ∆ =  Uniform prior Gamma prior 

(1, 3, 0.3) 
n  

1
λ̂  

2
λ̂  1

p̂  
1

λ̂  
2

λ̂  1
p̂  

30 1.27804 

(0.23421)

2.95408 

(0.21022)

0.32255 

(0.02852)

0.90422 

(0.12184)

2.92654 

(0.17127)

0.29272 

(0.02816)

60 1.18654 

(0.12259)

2.96841 

(0.12294)

0.31169 

(0.01425)

0.99252 

(0.08906)

3.16251 

(0.11014)

0.29292 

(0.01467)

90 1.11736 

(0.08421)

3.03446 

(0.09202)

0.29601 

(0.01209)

0.99862 

(0.06392)

3.10927 

(0.08017)

0.30449 

(0.00975)

(4, 2, 0.3) 30 3.15788 

(0.37712)

2.39382 

(0.20534)

0.27225 

(0.03306)

3.33275 

(0.20673)

1.53806 

(0.13504)

0.26159 

(0.03158)

60 3.27379 

(0.25784)

2.11814 

(0.100261)

0.28028 

(0.01724)

3.53594 

(0.15596)

1.98731 

(0.07414)

0.28327 

(0.01722)

90 3.48172 

(0.19301)

1.97915 

(0.06239)

0.28923 

(0.01199)

3.71968 

(0.12858)

2.02962 

(0.05543)

0.29855 

(0.01151)

Tab. 3: Bayes estimates and their posterior risks in parentheses under WSE loss function
for α1 = α2 = 0,5

( )1 2 1
, , pλ λ∆ =  

Uniform prior Gamma prior 

(1, 3, 0.3)
n  

1
λ̂  

2
λ̂  

1
p̂  

1
λ̂  

2
λ̂  

1
p̂  

30 1.44482 

(0.20249)

3.46408 

(0.18329)

0.33586 

(0.02587)

1.19865 

(0.14559)

3.09169 

(0.18119)

0.32046 

(0.02543)

60 1.30518 

(0.11689)

3.25899 

(0.11812)

0.32547 

(0.01394)

1.19724 

(0.09291)

3.06531 

(0.11409)

0.31813 

(0.01380)

90 1.22920 

(0.07862)

3.22525 

(0.08860)

0.31568 

(0.00939)

1.12369 

(0.07364)

3.02841 

(0.08014)

0.31159 

(0.00926)

(4, 2, 0.3) 30 3.62231 

(0.26817)

2.45215 

(0.17910)

0.32801 

(0.02894)

3.67975 

(0.17843)

2.22254 

(0.12847)

0.32645 

(0.02853)

60 3.85142 

(0.18575)

2.36166 

(0.09946)

0.31468 

(0.01637)

3.73249 

(0.13603)

2.10748 

(0.07212)

0.30922 

(0.01623)

90 4.01127 

(0.13375)

2.14132 

(0.06191)

0.30302 

(0.01113)

4.02511 

(0.10626)

2.10239 

(0.05874)

0.30865 

(0.01110)

Tab. 4: Bayes estimates and their posterior risks in parentheses under P loss function for
α1 = α2 = 0,5
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error loss function unveiled the smallest posterior risk, which is really an advantageous
property. Furthermore, we obtain efficient results using the gamma prior than the
uniform prior. Posterior risks for the Bayes estimates assuming uniform prior is also
little high. Hence, gamma prior has a clear edge over uniform prior, and this allows
us making a selection of preferable priors and loss functions.

Tab. 5: Bayes estimates and their posterior risks in parentheses under Q loss function for
α1 = α2 = 0,5

( )1 2 1
, , pλ λ∆ =  

Uniform prior Gamma prior 

(1, 3, 0.3) 
n  

1
λ̂  

2
λ̂  1

p̂  
1

λ̂  
2

λ̂  1
p̂  

30 1.42198 

(0.15933)

2.71533 

(0.08324)

0.28587 

(0.10372)

0.88985 

(0.12451)

2.57169 

(0.06229)

0.27185 

(0.10158)

60 1.19756 

(0.09666)

3.04609 

(0.04324)

0.29019 

(0.05033)

0.89313 

(0.08541)

2.80753 

(0.03678)

0.28432 

(0.05082)

90 0.96084 

(0.07182)

3.04502 

(0.02867)

0.29881 

(0.03387)

0.92031 

(0.06915)

3.09514 

(0.02599)

0.29752 

(0.03622)

(4, 2, 0.3) 30 2.63941 

(0.16928)

1.85095 

(0.09359)

0.23829 

(0.13876)

3.32534 

(0.06399)

1.98038 

(0.06659)

0.25039 

(0.13328)

60 3.05887 

(0.09285)

2.01323 

(0.04771)

0.25889 

(0.06833)

3.43282 

(0.05256)

1.98509 

(0.03841)

0.26126 

(0.06552)

90 3.40641 

(0.05712)

2.05516 

(0.03229)

0.28698 

(0.04011)

3.56395 

(0.03967)

1.98966 

(0.02798)

0.29817 

(0.04249)

Tab. 6: Bayes estimates and their posterior risks in parentheses under MSE loss function
 for α1 = α2 = 0,5

( )1 2 1
, , pλ λ∆ =  

Uniform prior Gamma prior 

(1, 3, 0.3) n  
1

λ̂  
2

λ̂  1
p̂  

1
λ̂  

2
λ̂  1

p̂  

30 1.56316 

(0.13983)

3.17613 

(0.06539)

0.34433 

(0.07919)

1.39264 

(0.11074)

3.13597 

(0.05137)

0.34879 

(0.07387)

60 1.20835 

(0.08519)

3.13318 

(0.03873)

0.31817 

(0.04427)

1.29967 

(0.07846)

3.12355 

(0.03311)

0.32437 

(0.04465)

90 1.13228 

(0.06587)

3.12494 

(0.02648)

0.31605 

(0.03102)

1.06324 

(0.05819)

3.11485 

(0.02459)

0.31339 

(0.03011)

(4, 2, 0.3) 30 3.81075 

(0.07662)

2.72958 

(0.07206)

0.33941 

(0.09331)

3.75514 

(0.04864)

2.28751 

(0.05724)

0.33764 

(0.09217)

60 3.87797 

(0.05508)

2.31112 

(0.04341)

0.32772 

(0.04859)

3.94932 

(0.03452)

2.18939 

(0.03619)

0.32983 

(0.04722)

90 3.87857 

(0.04647)

2.24802 

(0.02984)

0.31217 

(0.03695)

4.00175 

(0.02892)

2.03815 

(0.02642)

0.31931 

(0.03704)
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5.  APPLICATION

In this section, we analyze real data set to illustrate the methodologies discussed in
the previous sections. The data set represents the lifetimes of 50 devices. The data,
obtained from Aarset (1987), are given below:

1, 7, 18, 40, 45, 50, 55, 86, 85, 85, 85, 84, 84, 84, 79, 75, 72, 67, 67, 63, 60, 18, 11, 6,

3, 2, 1, 1, 0.2, 0.1, 1, 18, 86, 85, 85, 83, 82, 82, 67, 67, 63, 47, 46, 36, 32, 21, 18, 12, 7, 1.

Among the 50 observations, the two observations, i.e., 0.2, 0.1 considered as
outliers, are discarded. The generalized inverted exponential distribution is considered
as a suitable candidate for modeling complex lifetime data sets, so we can employ
this data to the generalized inverted exponential mixture model. Now we assume
that when a failure occurs, we can identify the object as per its cause of failure and
regard it as belonging to population I or population II, respectively. We have taken
n1= 20,  n2= 28,  r1= 16 and r2 = 24. The following information is extracted for our

mixture modelby taking censoring time T = 84, n r
j

j

r

x= = =−

=
∑48 40 3 78676

1

1

1

1

, , .

and 2

1

1

2

3 36858
j

j

r

x−

=
∑ = . . Bayes estimates are obtained by assumingboth priors

using the informative and non-informative priors under five loss functions. Bayes
estimates and posterior risks for real data set are listed in Table 7. It is clear that the
best estimates are those with the minimum posterior risks and optimal estimates
obtained under MSE loss function.

Tab. 7: Bayes estimates and their posterior risks in parentheses for real dataset.

Loss functions 

Uniform prior Gamma prior 

1
λ̂  

2
λ̂  

1
p̂  

1
λ̂  

2
λ̂  

1
p̂  

SE 3.02441 

(0.72961)

4.27720 

(0.37123)

0.38083 

(0.00523)

3.23084 

(0.52619)

3.51715 

(0.48457)

0.38508 

(0.00521)

WSE 2.76135 

(0.26305)

4.17425 

(0.10295)

0.366485 

(0.01435)

3.06016 

(0.17068)

3.37101 

(0.14614)

0.37075 

(0.01432)

P 3.14271 

(0.23661)

4.32038 

(0.08636)

0.38764 

(0.01360)

3.31127 

(0.16086)

3.58538 

(0.13645

0.39187 

(0.01357)

Q 2.47957 

(0.10204)

4.05193 

(0.02930)

0.35147 

(0.04098)

2.88315 

(0.05784)

3.21765 

(0.04549)

0.35574 

(0.04048)

MSE 3.26564 

(0.07387) 

4.36399 

(0.01989)

0.39456 

(0.03478)

3.39371 

(0.04799)

3.65493 

(0.03769)

0.39877 

(0.03434)
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(a)

It is obvious that results obtained through real data are well-matched with
simulation results, though there are some exceptions when using large data set. The
Table 7 also reveals that performance of the gamma prior is best. Some graphical
representation of loss functions of estimates under different priors for the mixture
components are presented in Figure 3. It is manifest that the priors (gamma and
uniform) influence the magnitude of the loss functions. These graphs illustrate the
versatility of the loss functions under both priors in addition to a noticeable
minimum magnitude of MSE loss function for the estimates of both components of
mixture distribution. Due to minimum magnitude of the posterior risks the estimate
of mixing proportion component SE performs better under both priors.
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Fig. 3: The loss functions of estimates under uniform and gamma priors. (a) for first

component λ̂1,  (b) for second component λ̂2
, (c) for mixing proportion component p̂1
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6. CONCLUDING REMARKS

In this study, we propose a mixture of two-components generalized inverted
exponential distribution model of lifetime study. We have discussed nice properties
and estimation of parameters of the mixturedistribution using five different loss
functions under informative and noninformative priors. The Bayesian analysis
ensures us to perform a comprehensive selection of the suitable prior and a desirable
loss function for the mixture two-components generalized inverted exponential
distributions. The simulation study has revealed some interesting results related to
Bayes estimates of parameters. The posterior risks of the estimates of the parameters
appeared to be quite large with relatively large values of the parameters and vice
versa. To address the problem of selecting prior and loss function we have observed
that the Bayes estimators of parameters perform well under mean squared loss
function assuming gamma prior. Practitioners can use results developed in this
study to analyze heterogeneous data under Type I censoring. This newly proposed
mixture distribution is worth investigating because it has the flexibility to
accommodate different shapes for different values of parameters that occur in
survival analysis.This work can be extended in future using different censoring
schemes.
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