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1. INTRODUCTION

Missing data have always been a problem for empirical social scientists. It
reduces power and can induce biases into the data analysis. While missing data
constitute problems for all social science research, the field of longitudinal
network research is affected on multiple fronts. On the one hand, longitudinal
research is likely to produce more missing data, because the same people are
followed over time, making dropout more likely. On the other hand, network
questionnaires are complex and often ask sensitive questions from the
respondents, thus increasing the poten tial for missing data. Additionally, the strong
dependence between actors makes missing data. Missing tie variables do not only

doi.org/10.26398/IJAS.0030-002

MULTIPLE IMPUTATION FOR 
LONGITUDINAL NETWORK DATA

Robert W. Krause, Mark Huisman 1
Department of Sociology/ICS, University of Groningen, Groningen, The Nether-
lands

Tom A.B. Snijders
Department of Sociology/ICS, University of Groningen, Groningen, The Nether-
lands
Nuffield College, University of Oxford, Oxford, UK

Abstract Missing data on network ties are a fundamental problem for network analysis. 
The biases induced by missing edge data are widely acknowledged. In this paper, we 
present a new method with two variants to handle missing data due to actor non-response 
in the framework of stochastic actor-oriented models (SAOMs). The proposed method 
imputes missing tie variables in the first wave either by using a Bayesian exponential 
random graph model (BERGMs) or a stationary SAOM and imputes missing tie variables 
in later waves utilizing a SAOM. The proposed method is compared to the standard SAOM 
missing data treatment as well as recently proposed methods. The multiple imputation 
procedure provided more reliable point estimates than the default treatment. The results 
have relevant implications for the analysis of network dynamics under missing data.

Keywords: Missing data, Multiple  imputation, Longitudinal  network data, Stochastic



34 Krause R.W., Huisman M., Snijders T.A.B.

mean less information about the sending actors, but also less information about all

receiving actors in the network, given that missing actors could have nominated

any given number of the observed actors. Research into missing data and missing

data treatments in networks is an ongoing field of research (e.g., de la Haye et al.,

2017; Huisman and Krause, 2017; Smith et al., 2017). One model family used to

analyze network dynamics in a longitudinal setting are stochastic actor oriented

models (SAOMs). In this paper, we present a multiple imputation procedure for

missing data in longitudinal network research in the framework of SAOMs. It

extends previous work on multiple imputation for longitudinal networks that fo-

cused on the imputation of missing data in the first observation point (first wave)

of the study (Hipp et al., 2015). The proposed procedure is an imputation method

applicable to missing data at all waves.

The paper is organized as follows. In Section 2, we describe the two network

model families relevant for this paper, the stochastic actor-oriented model and

the exponential random graph model (ERGM). In Section 3, we detail the non-

response problem and its specifics for missing data in networks. Section 4 presents

the proposed multiple imputation procedure for longitudinal network data, and a

(simulated) example application is presented in Section 5, including comparisons

to completely observed networks and benchmark procedures. We end the paper

with a discussion of the findings and according recommendations.

2. STATISTICAL MODELS FOR NETWORK ANALYSES

Social network analysis is the study of relational data between social actors using

statistical models. A core issue in analyzing these relations is their embeddedness

in the larger network structure. Any analysis model must take these dependencies

into account. Two commonly used model families for analyzing networks are

stochastic actor-oriented models and exponential random graphs.

2.1. STOCHASTIC ACTOR-ORIENTED MODELS

Researchers studying the co-evolution of social relations (e.g., friendships) and

behaviors (or attitudes) encounter the problem that usually the social relations

and the behaviors are only observed at discrete points in time. It is unrealistic

to assume that the changes made in a friendship network observed M times all

happened at once between observations. It is more likely that the changes between

the network states from m−1 to m are the result of a dynamic process consisting

of a sequence of small changes.

A common model to analyze these network dynamics is the stochastic actor-
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oriented model introduced by Snijders (1996, 2001, 2005). The SAOM assumes

that each actor has control of its outgoing ties and is aware of the ties between

other actors. The SAOM models the change between the networks as a series of

mini steps, each constituting the creation or deletion of a tie, or no change. At

each step, a certain actor i, stochastically chosen with frequencies determined by

a rate function, evaluates her choice set based on the current state of the network.

Usually the rate function is constant for all actors, meaning actors are chosen

at random, however, the rate function can be estimated (or set) to incorporate

endogenous or exogenous effects.

Let x denote the n× n adjacency matrix where n is the number of actors,

with xi j = 1 when there is a directed tie from actor i to actor j and xi j = 0 when

there is no tie2. Self nominations are not allowed (xii = 0). The chosen actor i
can either create a tie to an unconnected actor, drop a tie to a connected actor, or

do nothing. The probability of each possible actor decision is determined by an

objective function, in which actor-specific network statistics and covariates ski are

weighted with parameters of the network evolution θk, given the current state of

the network x:

fi(θ ,x) = ∑
k

θkski(x). (1)

The network statistics ski(x) can be subgraph counts (or non-linear transfor-

mations thereof) in the network neighborhood of the focal actor i (e.g., reciprocity,

outdegree, indegree) or functions of the attributes of the actors sending or receiv-

ing the ties, and are always calculated from the network at the current mini step.

This allows the model to capture the dynamic process. Two problems arise that

make it impossible to directly calculate the likelihoods or expected values of pa-

rameters. First, the true sequence of these mini steps is unobserved3. Second, the

possible states of the network are far too numerous; A binary network of only 30

actors already has 2302−30 = 7.9× 10261 possible states. Therefore SAOMs are

estimated using a simulation approach (hence the name SIENA – Simulation In-

vestigation of Empirical Network Analysis – for the software to estimate SAOMs;

The contributed package to the statistical system R is RSiena, Ripley et al., 2017).

2 Throughout  the paper  we focus on directed networks. All  models discussed also apply  to
undirected networks.

3 If  this sequence  of changes is observed,  it is recommended  to use relational  event models
(REM;  Butts, 2008) or their actor oriented counter part, dynamic network actor models
(dyNAM; Stadtfeld and Block, 2017; Stadtfelt et al., 2017).
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Model estimation is typically done by the method of moments, that is, de-

termining parameters such that for a selected set of statistics the expected values

are equal to the observed values. The algorithm is split into three phases. Phase 1

determines the sensitivity of the parameters to the given statistics and provides ini-

tial estimates for the parameters. Phase 2 estimates the parameters iteratively by

simulating the mini steps of the entire process many times, each time calculating

the statistics used for the method of moments, and updating the parameters ac-

cording to Robbins-Monro steps (see Snijders, 2001). Phase 3 takes the resulting

parameter estimates to simulate multiple runs of network evolutions (normally at

least 1000) to estimate the covariance matrix of the model parameters. This pro-

cess involves thousands of repeated simulations of the whole dynamic network

process, and each of these simulations consists of several hundred or more mini

steps. The simulated networks in Phase 3 are used to test the convergence of the

model, calculate standard errors for the parameters and the final networks can be

used for goodness-of-fit (GoF) testing.

Four different simulation-based estimation methods are implemented in the

SIENA software: Method of moments (MoM), generalized method of moments

(GMoM), maximum likelihood (ML), and Bayesian estimation (Amati et al., 2015;

Koskinen and Snijders, 2007; Ripley et al., 2017; Snijders et al., 2010a). Espe-

cially the MoM and the ML estimation algorithm have appealing features that

will be utilized in the proposed imputation method. One important difference

between MoM and ML estimation lies in how they simulate network evolution

trajectories, both in phase 2 and phase 3 of their respective estimation processes.

Network trajectories under MoM are simulated conditional on the observed net-

work at wave m−1 and on the estimated parameters. In contrast, ML simulations

are conditional on the observed network at wave m− 1, the observed network at

wave m and the estimated parameters. Thus, MoM simulations provide a distri-

bution of networks at the end of the simulation, while ML simulations always end

in the observed network at wave m. (For a more detailed introduction to SAOMs

see Snijders, 2017a; For an introduction to applying SAOMs see Snijders et al.,

2010b, and Steglich et al., 2010.)

2.2. STATIONARY STOCHASTIC ACTOR-ORIENTED MODELS

Although SAOMs are mostly used for investigating dynamic change processes

over time, they can also be applied to cross-sectional network data (Snijders and

Steglich, 2015). While longitudinal SAOMs model the changes in network struc-

ture, stationary SAOMs assume that the network structure, although changing, is



Multiple Imputation for Longitudinal Network Data 37

in a stochastically stable state. This means that it is assumed that the observed

network is in a short-term dynamic equilibrium and thus the statistics ski(x) will

have a stationary distribution. The stationary models can be estimated by using

the observed network as both starting and end network for the stationary distri-

bution (reflecting that the network statistics remain constant) and fixing the rate

parameter to a large value (say 50). The rate parameter cannot be estimated in

the stationary SAOM, as it reflects the rate of change and the stationary SAOM

assumes no change. However, fixing a large value for the rate function allows the

model to simulate network trajectories and estimate the parameters in the objec-

tive function such that the observed network statistics remain stable.

2.3. EXPONENTIAL RANDOM GRAPH MODELS

The most common family used to analyze cross-sectional network data is the fam-

ily of exponential random graph models (ERGMs; Lusher et al., 2013). ERGMs

model the observed network as a function of its statistics (mainly counts of sub-

graphs, e.g., the number of reciprocated ties or the number of transitive triplets).

Basic to the ERGM is a linear predictor quite similar to the objective function of

the SAOM:

∑
k

θksk(x), (2)

with the key difference that in the SAOM the objective function is actor specific,

as can be seen in the actor index i in (1). SAOMs are, as the name states, actor-

oriented models, while ERGMs are tie-oriented models. While SAOM parameters

focus on the decision of social actors given their network neighborhood, ERGM

parameters focus on the presence (or absence) of a tie, given all other ties in the

network. For a more detailed comparison between SAOMs and ERGMs see Block

et al. (2016).

3. MISSING DATA

3.1. MISSING DATA MECHANISMS

Missing data mechanisms describe the underlying processes for the data to be

missing, using the distribution of missingness. Following the framework defined

by Rubin (1976), there are three types of missing data mechanisms. Data are

missing completely at random (MCAR) if each individual tie variable (or actor)

is missing independent of observed and missing data. Data are missing at random

(MAR) if the probability to be missing is independent of the missing tie (actor)
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itself, but is related to other observed variables (e.g., males are less likely to fill

out the network part of the survey). These two cases are often summarized as ig-

norable missing data in the survey research setting, because given proper missing

data techniques are applied, they will yield no bias on a resulting analysis. Lastly,

data are missing not at random (MNAR) if the missingness is dependent on the

(unknown) missing value itself.

3.2. MISSING DATA TYPES

It is not only important to inspect missing data mechanisms, but also the patterns

of missing data showing the spread over the data set. Usually, two types of patterns

are distinguished: item (or tie) non-response and unit (or actor) non-response

(Huisman and Steglich, 2008). Item non-response occurs when a participant is

only observed on some items, but not on all. In network research this means

that only some ties (outgoing or incoming) are not observed for an actor. Unit

non-response occurs when a complete case is missing. In the setting of network

research this means that all outgoing ties of the participant are missing. Incoming

ties however will still be observed. In some cases unit non-response of an actor

will not only lead to missing outgoing ties, but will remove the actor completely

from the study, leading to missing incoming ties as well (Borgatti and Molina,

2003).

A special case of non-response in longitudinal research is wave non-response

(Huisman and Steglich, 2008). In this case, data are only available for some

actors for some waves of the data collection, but not for all. This study will

only focus on wave non-response, which is illustrated in Section 5 with networks

collected over three time points, including (completely) observed covariates. The

findings, however, can be applied to the case of item non-response, as item non-

response is less severe and retains more information per actor than wave or unit

non-response. For ease of the illustration, in this paper, all data are considered

missing completely at random (MCAR).

3.3. MISSING DATA IN LONGITUDINAL NETWORK DATA

For estimating SAOMs, it is important to distinguish between missing data in

the first wave and missing data in following waves, because the first wave is the

starting point for the simulation and is treated as given by the model. Therefore, it

is necessary to impute the missing data in the first wave to provide a starting point

for the simulations.
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Handling missingness in consecutive waves differs depending on the estima-

tion procedure used in the SIENA software (Ripley et al., 2017). For the method

of moments (MoM) procedure, the model-based hybrid imputation procedure de-

scribed by Huisman and Steglich (2008) is used to handle missing tie variables.

It is hybrid because it uses imputation for the simulations but then restricts the

use of the imputed values for the estimating equations. For the first wave, it uses

the simple method of imputing no-ties (zeros) for missing ties. Social networks

are usually sparse and without taking any other information into account a no-tie

is the most likely guess for each missing cell. Missing ties in consecutive waves

are imputed by last value carried forward (Lepkowski, 1989). In the calculation

of the target statistics used for parameter estimation, missing tie variables are ex-

cluded. Therefore, the imputations have no direct effect on parameter estimation,

although they do have effect on the simulations. Earlier work has shown that for

small amounts of missing actors (up to 20%), this method provides only small bi-

ases in the parameter estimates under MCAR, MAR and MNAR, and is superior

to other simple imputation methods (Huisman and Steglich, 2008).

If maximum likelihood (ML) estimation is chosen, missing data at the end

of a period are treated in a model-based way. The procedure is given in Sni-

jders (2017b). As described before, the chain of mini steps between two waves

simulated in the ML procedure is conditional on the observed data at both time

points, m− 1 and m. If data for time m− 1 are complete, this conditioning de-

termines the probability distribution of any missings at time m. If data for time

m−1 are incomplete, then the extra information inserted is the prior distribution

for the missing tie variables, and this assumes independent binary variables with

the observed density (among observed variables) as the tie probability. Given all

observed variables at times m− 1 and m and this prior, the chains are simulated

and this implies the stochastic model-based imputation of the missing tie variables

at both waves. The simulated chains are used for parameter estimation. If there

are no missing data at wave m−1, the imputed values for missing ties at wave m
are draws from their conditional distribution given all observed data. If the miss-

ing data are MAR and the estimation model is realistic, this does not introduce

any additional biases in parameter estimation.

It should be noted that for M ≥ 3 waves, in the ML estimation procedure

implemented in RSiena, all M−1 periods in between waves are treated separately.

For example, when analyzing M = 3 waves, missing ties in wave 2 are treated in

a model-based way only for the first period (wave 1 to wave 2), but are imputed

with the observed density of the network for the second period (wave 2 to wave 3).
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In the case of wave non-response this is a limitation, and was only chosen to

keep the algorithm tractable and for purposes of parallelization. Moreover, in

the ML procedure, missing data are not imputed in the traditional sense. Neither

are imputed values returned, nor are imputed values directly used for parameter

estimation in consecutive periods.

An alternative approach for handling missing data in SAOMs was proposed

by Hipp et al. (2015). They propose an imputation procedure using ERGMs to

impute the first observation of the network. First, an ERGM is estimated on the

network, after which the estimated parameters are used to simulate the missing

ties, while keeping all observed ties fixed. This provides realistic starting points

that can be used in both the simulation phase and estimation phase of the SAOM

estimation procedure. Although the procedure was evaluated without reference

to a complete data set (and generating model) and only assessed by comparing

different missing data handling methods, it is expected that the method outper-

forms the default procedures discussed above, provided that the imputations are

performed with a well-fitting model. This is because the procedure utilizes far

more information for imputation than the standard procedures, imputing the miss-

ing ties in wave 1 conditional on the observed network and covariates at wave 1.

The authors give suggestions how to use the procedure for multiple imputations.

Another strategy for dealing with missing data in network studies with mul-

tiple periods (M > 2) was proposed by de la Haye et al. (2017), called inclusive
sampling. The strategy involves forming subgroups of the data for each period.

Each subgroup only includes actors that are fully observed at the start and end

of the respective period. Although this procedure disregards some available in-

formation, it was specifically designed to increase the likelihood of the SAOM to

converge.

4. MULTIPLE IMPUTATION

In this paper, we present a multiple imputation procedure for longitudinal net-

work data. It allows the user to analyze all available data and not only completely

observed dyads, which results in increased power for the analysis. Multiple im-

putation has the advantage over single imputation that it takes into account the

increased variability of parameter estimates due to imputation (see Huisman and

Krause, 2017, for an overview of imputation methods for network data). The pro-

posed method uses model-based imputation for the first wave, similar to Hipp et

al. (2015), but takes some further steps.
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First, it allows imputation of missing ties both in the first and later waves.

The imputations for later waves are obtained using the ML simulation method for

SAOMs. This makes it possible to impute the missing tie variables for a given

wave by draws from their conditional distribution, given the observed data for the

preceding and the current wave. Second, two options for imputing missing data in

the first wave are proposed, which both use data from the first and second wave.

The first option is an adjustment of the procedure of Hipp et al. (2015), using

Bayesian ERGMs to impute the first wave, rather than ERGMs (Caimo and Friel,

2011, 2013; Koskinen et al., 2010; 2013). The second option is to use a stationary

SAOM to impute the first wave.

4.1. MULTIPLE IMPUTATION: GENERAL THEORY

Multiple stochastic imputation consists of performing the following steps (e.g.,

see van Buuren, 2012):

(1) Specify an imputation model and obtain starting values for the parameters

of the model (often estimated from the observed data). With this model,

specify the probability distribution of the missing data, given the observed

data, and fill in starting imputations by random draws from this distribution.

(2) Obtain a conditional distribution of the parameters of the imputation model,

given the observed and imputed data and estimate (draw) new values for the

parameters (needed to generate proper multiple imputations, either by using

Bayesian methods and specifying posterior distributions of the parameters,

or by using bootstrap methods and re-estimating parameters from the re-

sampled data). With these new parameters, impute the missing values by

drawing values from the conditional distribution of the missing data, given

the observed data and the new parameters.

(3) Repeat step (2) until convergence, and retain D imputed data sets from this

procedure, differing only in the imputed values.

(4) Analyze each imputed data set separately with standard (complete-case)

techniques and combine the results of the analyses following the procedures

outlined by Rubin (1987).

Rubin’s rules for combining results include combining parameter estimates

and covariances. Let γ̂d denote the dth estimate of the parameter γ and Wd =

cov(γ̂d |xd) the (within-imputation) covariance matrix of the parameters of data

9
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set xd . The combined estimate for the parameters is the average of the estimates

of the D analyses:

γ̄D =
1

D

D

∑
d=1

γ̂d . (3)

Obtaining the proper standard errors is a bit less straightforward. The combined

estimate for the standard error needs to take into account the variance within and

between imputations. It requires the average within-imputation covariance ma-

trix W̄D and the between-imputation covariance matrix BD. The average within-

imputation covariance matrix is given by

W̄D =
1

D

D

∑
d=1

Wd (4)

and the between covariance matrix by

BD =
1

D−1

D

∑
d=1

(γ̂d − γ̄D)(γ̂d − γ̄D)
′. (5)

The total variability for γ̄D is estimated by

TD = ˆcov(γ̄D) = W̄D +

(
1+

1

D

)
BD. (6)

The standard errors for the parameters are given by the square roots of the diagonal

elements of TD.

4.2. MULTIPLE IMPUTATION: LONGITUDINAL NETWORK DATA

When applying these general steps to the longitudinal network setting, we have

to adjust the steps (1) to (3) to the SAOM. For steps (1) and (2), we distinguish

between the first wave and later waves of the longitudinal network data, as the

SAOM does not model the network in wave 1. To outline the general procedure,

we will first discuss imputation of later waves, m = 2, . . . ,M and then return to the

imputation of the first wave.

MULTIPLE IMPUTATION: MISSING DATA IN LATER WAVES

For consecutive waves m = 2, . . . ,M, missing ties are imputed wave by wave us-

ing the SAOM. Given the data for wave m− 1, we use the MoM algorithm of

the SAOM with default treatment of the missing data to estimate the imputation
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model (step (1)). In this step, the MoM procedure is preferred over ML estimation

because it is faster and, more importantly, gives the opportunity to assess the good-

ness of fit of the imputation model by using the networks simulated in phase 3 of

the SIENA algorithm. Imputation should be performed with a well-fitting model

that includes all parameters that will be included in the analysis model. The model

is estimated and convergence is assessed for period m−1 to m, and the fit of the

model is inspected. If deficiencies are found, new effects (parameters) can be

added and the model is re-estimated by MoM. This process of specifying, esti-

mating, and inspecting imputation models is repeated until a reasonable model

fit is obtained. An alternative is to specify, estimate, and inspect the imputation

model by considering all waves together.

Once a fitting imputation model is obtained for period m− 1 to m, we con-

tinue to step (2) of the imputation process and utilize ML simulation to impute

the missing ties at wave m, conditional on the complete data for wave m− 1, the

observed data in wave m, and the imputation model estimated in step (1) (if there

were any missings in wave m−1 they were imputed in earlier steps of the proce-

dure). Repeating this procedure wave by wave results in one complete data set.

The sequence of steps is executed D times to provide D imputed data sets. These

completed data sets are analyzed separately in step (4) of the process giving D
estimates that are combined according to the rules outlined above.

MULTIPLE IMPUTATION: MISSING DATA IN THE FIRST WAVE

Standard SAOM models are models of change that take the first wave as a given

starting point and model the change to consecutive waves. This allows us to use

the regular SAOM framework to impute missing tie variables in later waves, but,

as the first wave is not modeled, prevents us from imputing the missing data in

the first wave. Therefore we need to draw our first wave imputations from a

different distribution. This goes beyond the SAOM model definition, and requires

additionally a specification of the distribution for the first wave.

One way would be to follow a completely model-based procedure, assuming

a prior distribution from which the first wave network was drawn together with the

SAOM assumptions for the transitions to later waves. This was shown by Kosk-

inen et al. (2015) for longitudinal network data using the longitudinal ERGMs

in a Bayesian approach with prior distributions for the parameters. This is also

used in the ML procedure implemented in the SIENA software (Snijders, 2017b).

The implementation is not completely multivariate, however, because each pair

of consecutive waves is handled separately from the other waves, using very sim-
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plistic prior distributions. Furthermore, the SIENA software currently does not

allow to export the imputations for the first wave. Therefore we follow a different

approach, less compelling than a model-based approach would be but easier to

perform.

We propose two options for first wave imputations, 1) Bayesian ERGMs and

2) stationary SAOMs. These distributions are chosen because both are models for

cross-sectional networks, able to provide multiply imputed data sets conditional

on the observed data for the first wave, and able to take into account the next wave

as a covariate. Thus, the choice is made out of convenience and flexibility rather

than being principled.

ERGMs were already proposed as a possible distribution for this purpose

by Hipp et al. (2015). Moreover, ERGMs (especially Bayesian ERGMs) can be

estimated reliably under missing data (Koskinen et al., 2010, 2013). For Bayesian

ERGMs the imputation of missing tie variables is integrated with the parameter

estimation. In our first option for imputing the first wave, we estimate a Bayesian

ERGM under missing data as described by Koskinen et al. (2010, 2013) and retain

D imputed data sets from the converged model. This is different from the non-

Bayesian method proposed by Hipp et al. (2015), where all D imputations are

created with the same set of estimated parameters. The non-Bayesian procedure

underestimates the between-imputation variance BW , giving a downward bias to

the standard errors.

For this we employ the Bergm package in R (Caimo and Friel, 2014), which

we adapted to incorporate missing data treatment as described by Koskinen et al.

(2010, 2013). The choice of the imputation model is not trivial, and generally

the imputation model should always contain all the parameters that will also be

used in the analysis model. However, there is no perfect one-to-one comparability

between SAOM and ERGM parameters (Block et al., 2016), which can be seen

in equations (1) and (2). Parameters in ERGMs are multiplied with the overall

network statistics sk(x), while parameters in the SAOM relate only to the network

neighborhood of the focal actor (the i in ski(x)). However, both model families

are generally able to model similar structures4. Given the strong longitudinal

dependence, it will be essential that the network in wave 2 is used as a dyadic

covariate for wave 1. If, however, all actors that are missing in wave 1 are also

missing in wave 2, including wave 2 as a dyadic covariate will add little to the

imputations.

4 To identify  corresponding parameters refer to the package manuals (the ergm package, Hand-
cock et al., 2017; The RSiena  package, Ripley et al., 2017).
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In our second option, we impute missing data in the first wave by using a

stationary SAOM. Imputation with the stationary SAOM for wave 1 is similar to

imputation with the SAOM employed for later waves as described above. Here,

we first estimate a stationary SAOM from wave 1 to wave 1 with the rate parameter

fixed to a large value (50), and then use ML simulation to impute the missing tie

variables conditional on the observed ties in wave 1 and our imputation model

(which should include wave 2 as a dyadic covariate).

However, two minor complications with the current implementation of the

ML algorithm in RSiena arise. First, the ML algorithm does not provide easy ac-

cess to the network that is internally imputed for the beginning of the simulation,

thus imputation is not possible given the simulated trajectories alone. Changes to

this are not trivial. To overcome this minor problem we create a copy of wave 1

in which we impute the missing data with a simple ad hoc procedure (imputing

ties randomly with the probability of the observed density of incoming ties in the

available data). The imputed copies of wave 1 and the observed wave 1 with the

missing data are then used as respective start and end points for the ML simu-

lation. Second, the ML algorithm requires that at least one tie variable changes

between the networks. This is not the case here, as wave 1 is used both as start

and end point to estimate a stationary SAOM. To fix this minor issue we change

one randomly selected observed tie (selected independently across the D imputed

data sets) in the copy of wave 1 to a no-tie. This will have minimal impact on the

ML simulation, because the simulated network at the end of the trajectory will be

equal to the observed network at the end of the period, thus the change in the copy

of wave 1 does not lead to changes in the imputed data. The tie change is only

necessary when using ML (or Bayesian) estimation or simulation of stationary

SAOMs, but not for MoM estimation or simulation.

MULTIPLE IMPUTATION: SUMMARY

To summarize the procedure, the specification of steps (2) and (3) of the general

multiple imputation procedure of Section 4.1 is as follows:

(2.1) If the network at wave 1 has any missing ties, estimate a Bayesian ERGM

or a stationary SAOM to impute the missing ties. The model specification

includes the observed network at wave 2 as a dyadic covariate.

(2.2) For d = 1, . . . ,D:

(a) If the network at wave 1 has missing ties, impute by a random simu-

lation draw from the model estimated in (2.1).
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(b) For m = 2, . . . ,M:

i. Estimate a SAOM using MoM for the period m− 1 to m, condi-

tional on the completed network at m−1.

ii. Impute the missing ties in wave m using the fitted imputation

model in the ML simulation procedure, conditional on the com-

plete data for wave m− 1, the observed ties in wave m, and the

fitted imputation model.

(3) Repeating step (2.2) D times leads to D completed data sets.

The advantage of multiple imputation is that it can give unbiased parameter

estimates with correct standard errors (and confidence intervals), even when the

number of imputations D is low (Rubin, 1987; van Buuren, 2012). An ongoing

question of research, however, is the required number of imputations D to obtain

good inference properties (e.g., power or p values). Following the general guide-

lines for multiple imputation (for non-network data; e.g., see van Buuren, 2012),

it is recommended to set D equal to the percentage of missing cases, but at least

to 20. Theoretically it is always better to set D as high as computation and data

storage do allow.

4.3. ESTIMATING THE IMPUTATION MODEL FOR MULTIPLE WAVES

In the multiple imputation procedure described above, missing ties are imputed

wave by wave, where for each period m − 1 to m a new imputation model is

estimated. If the network dynamics are not homogeneous across periods this is the

appropriate procedure and separate models need to be estimated for each period

from m− 1 to m. Given that the models can be reliably estimated, estimating a

new imputation model for each period ensures that differences in the dynamics

between waves are preserved by the imputation model (e.g., friendship dynamics

in a school classroom might be different right after the transition from middle to

high school, compared to dynamics in 3rd or 4th year of high school).

If the network dynamics differ between periods, new parameters need to be

added in later periods to obtain proper model fit. It is advised that the respective

parameters are added for all imputation models, including the imputation models

for previous waves. We recommend doing so for two reasons. First, the model fit

of a previous wave, although satisfying, could still be improved by incorporating

these new parameters. Second, the general recommendation is to include at least

all parameters in the imputation models that will be used in the analysis model

(e.g., van Buuren, 2012; Huisman and Krause, 2017). Comparison of the network
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dynamics in different waves or combining the results of multiple waves is easi-

est when the same parameters are used in all analysis models. Therefore these

parameters should also be included in the imputation models.

It is, however, possible to estimate the imputation model using all waves and

then applying it period by period. Using one model is advised if (1) the network

dynamics are homogeneous across periods (which can be tested within the SAOM

framework) or (2) the networks are small (e.g., school classes). Small networks

are more likely to yield unstable results, especially in the case of missing data, be-

cause they provide less information to reliably estimate parameters5. This means

that for small networks an imputation model not incorporating the information of

multiple periods might not be estimable.

4.4. MULTIPLE GROUPS

Stochastic multiple imputation reflects the uncertainty due to missing data and

due to imputation (i.e., prediction) of the missing data by combining within and

between-imputation variance in Equation (6). A multiple imputation procedure

is called proper if it also takes into account the uncertainty included in the esti-

mation of the parameters of the imputation model when estimating the between-

imputation variance BD in Equation (5) (Rubin, 1987; van Buuren, 2012). Im-

proper procedures do not fully capture the increased uncertainty, which can de-

flate BD. This means that for proper multiple imputations, a new draw from the

distribution of the parameters of the imputation model is needed for every impu-

tation. This can be accomplished by Bayesian estimation6. The proposed method

does not provide proper imputations, because imputations are not drawn from the

full posterior distribution. However, the Bayesian ERGMs used in he first wave

provide more reliable estimations of BD than would be achieved by imputations

drawn from ERGMs.

Currently, Bayesian estimation for SAOMs is only implemented in the SIENA

software for the analysis of multiple groups. This means that analyzing multiple

groups or networks has an important advantage for multiple imputation, as it pro-

vides more reliable standard error estimates if the Bayesian analysis is used. The

procedure for multiple groups is in general similar to the procedure outlined in

5 The actual size of the network is of secondary importance. The network change in relation to
the parameters  is the deciding  factor. Small networks tend to provide overall  less network
change for the parameters.

6 In general, bootstrap procedures are an alternative option to obtain a (sampling) distribution
of the parameters,  however, for network data bootstrapping is not a feasible  procedure
because of the strong, inherent dependencies between observations.



48 Krause R.W., Huisman M., Snijders T.A.B.

Section 4.2, with the exception that in step (2.2) a Bayesian SAOM is estimated,

from which the parameters are drawn to generate imputations.

In the single group situation, the drawback of the procedure in Section 4.2

is that the parameters of the imputation model are not drawn from their posterior

distribution and the method does not yield proper multiple imputations. For non-

network data it has been shown that not taking into account the extra uncertainty

due to estimating the parameters of the imputation model does yield fairly similar

results to those obtained under proper imputation, given that the sample size is

large and that the proportion of missing data is small (Allison, 2001). Although

the impact of proper imputations for network analysis has yet to be determined, it

is advised to obtain imputations as proper as possible.

4.5. MULTIPLE IMPUTATION VS. LIKELIHOOD-BASED TREATMENT

The model-based missing data treatment implemented in the ML estimation in

RSiena and the proposed multiple imputation procedure should provide asymp-

totically similar results in the situation of one period with only missing data in the

second wave. However, in other scenarios (e.g., missing data in multiple waves),

multiple imputation should lead to more reliable results, because the imputed val-

ues from the proposed multiple imputation procedure are based on more infor-

mation than the internal imputations in the ML procedure. Further, multiple im-

putation is generally more flexible than likelihood-based missing data treatment.

It allows to incorporate information not included in the analysis model (e.g., ad-

ditional actor covariates) and can be adapted easily to test the sensitivity of the

model to variations of the missing data mechanism. The purpose of this paper is

to introduce a multiple imputation procedure for SAOMs and apply it to a realistic

example, therefore a detailed comparison to the ML missing data treatment is out

of the scope of this paper.

5. ILLUSTRATIVE EXAMPLE

5.1. NETWORK DATA

The outlined procedure is demonstrated on an adolescent friendship network of 50

girls observed at three waves. The data set is used in previous SAOM (simulation)

studies (e.g., Huisman and Steglich, 2008) and was originally part of the Teenage

Health and Lifestyle study (Michell and Amos, 1997; Pearson and West, 2003;

Steglich et al., 2006). At every wave, the girls’ alcohol consumption was also

surveyed, using an ordinal five point scale. To illustrate the method and provide

a first comparison to existing methods we will apply the following missing data
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treatments: 1) the default treatment implemented in RSiena (MoM), 2) single

imputation with first wave ERGM imputation (1st-ERGM; Hipp et al., 2015), 3)

inclusive sampling (de la Haye et al., 2017), 4) multiple imputation with first

wave BERGM imputation (MI-BERGM), and 5) multiple imputation with first

wave SAOM imputation (MI-SAOM).

In this example, we generated missing data in each wave separately by ran-

domly selecting 10 actors and removing all outgoing ties for these actors (wave

non-response giving 20% MCAR data). For ease of the example, no missing data

on alcohol consumption were created. In period 1, 64% of the tie variables and

40% of the dyads were observed at both time points. In period 2, 62% of the tie

variables and 37% of the dyads were completely observed. This constitutes a very

high proportion of missing data.

5.2. MISSING DATA TREATMENT

After generating the missing data, the five missing data treatments were used to

handle the missing actors, and a SAOM was estimated on the treated data. The

estimated parameters are compared with the estimates obtained from the same

SAOM fitted to the complete data.

SAOM MODEL

We first estimated a SAOM to impute waves 2 and 3, using the default MoM

procedure on the incomplete data. The model was estimated on the incomplete

data and not on the complete data, because in empirical research the complete

data will not be available. The SAOM included the following structural effects:

Density, degree related effects (square-root of indegree popularity, square-root

of outdegree activity), reciprocity, triadic closure (geometrically weighted edge-

wise shared partners, GWESP7), and the interaction of reciprocity and GWESP.

Further, the model contained effects regarding selection on alcohol consumption:

Ego alcohol consumption, alter alcohol consumption, and similarity on alcohol

consumption. Additionally, we included alcohol consumption as a dependent vari-

able, including a linear and quadratic effect of previous alcohol consumption on

future alcohol consumption, as well as an effect for friends’ influence on alcohol

consumption (average similarity to friends alcohol consumption). The model is

generally similar to other models estimated on the network (e.g., Huisman and

Steglich, 2008). Model fit was evaluated on outdegree, indegree, and geodesic

7 This parameter  and all other geometrically   weighted  parameters  had a decay  parameter
of log(2).
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distance distributions, and on the triad census. The model showed good fit on the

incomplete data, and also on the complete data the fit was adequate.

MULTIPLE IMPUTATION

Following the presented procedure, two methods were used to impute the missing

data in the first wave: using Bayesian ERGMs and using stationary SAOMs. In

both methods, the first wave was multiply imputed D = 50 times.

In the Bayesian ERGM procedure, the imputation model included parame-

ters to model similar structures as the SAOM: parameters for edges, reciprocity,

triadic closure (geometrically weighted edgewise shared partners, GWESP), two-

paths (geometrically weighted dyadwise shared partners, GWDSP8), in- and out-

degree distribution (geometrically weighted indegree and outdegree) and a term

specifically modeling the reciprocated transitive triad. Further, a homophily pa-

rameter for alcohol consumption (based on absolute difference), as well as in- and

outdegree related effects of alcohol consumption were included. Additionally, the

observed network at wave 2 was included as a dyadic covariate. Missing data

at wave 2 were substituted with zeros, as the current implementation of dyadic

covariates in the ergm package does not allow missing data on dyadic covariates

(the ergm package is used for estimating BERGMs). After multiply imputing the

first wave, the procedure proposed in Section 4.2 was applied to impute waves 2

and 3 to obtain D = 50 imputed data sets using the SAOM with the parameters

identified earlier. On each of the 50 imputed data sets, the same SAOM was then

estimated using the MoM estimator, and the results were combined using Rubin’s

rules.

Multiple imputation was also employed using a stationary SAOM for the first

wave, followed by the outlined procedure for waves 2 and 3. The imputation

model for the first wave included the same parameters as the imputation model

for waves 2 and 3 (the regular, non-stationary SAOM) and, additionally, the ob-

served network at wave 2 as dyadic covariate. Missing data at wave 2 were sub-

stituted with zeros, as before. Again, D = 50 imputed data sets were obtained and

analyzed using the SAOM, and the results were combined.

ERGM IMPUTATION

Following the procedure proposed by Hipp et al. (2015), the first wave was im-

puted multiple times using the ergm package (Handcock et al., 2017). We were

8 A parameter for two-paths was included to aid the proper estimation of triadic closure.
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unable to obtain a converged model with the same parameters as used in the

BERGM. Therefore, the parameters for the in- and outdegree distributions (ge-

ometrically weighted indegree and outdegree) and the reciprocated transitive triad

were removed from the imputation model. Further, GWDSP was replaced by

the not geometrically weighted regular two-path parameter. After the first wave

was imputed D = 50 times, the regular SAOM model (MoM estimation) was esti-

mated, not treating the missing data in wave 2 or 3 (i.e., using the default missing

data treatment in RSiena). The results were combined according to Rubin’s rules.

INCLUSIVE SAMPLING

The inclusive sampling method was applied by excluding, period by period, all

actors who had any missing values within that period. Then, RSiena’s multi-

group analysis was performed on the separate periods (MoM estimation), treating

the two periods as separate groups.

5.3. RESULTS

The estimated model parameters are graphically presented in Figure 1 (including

error bars representing 1 standard error of uncertainty); The estimated values are

given in Table 1. The default treatment, inclusive sampling and 1st-ERGM im-

putation show lower estimates for the rate functions and biases for some of the

structural effects. Selection effects, however, are well estimated (although inclu-

sive sampling shows a much lower estimate for selection of others with similar

alcohol consumption) and so are all parameters related to the evolution of alco-

hol consumption (here again, inclusive sampling shows a much lower influence

effect). The estimated standard errors for these three methods are often substan-

tially larger than the complete data estimates, and sometimes so large that they

would influence model inferences (e.g., the standard errors for outdegree activity

are so large that the parameter would no longer be considered significant).

The proposed MI procedures are in stark contrast to these three methods.

Both of them perform very well and all parameter and standard error estimates

are very close to the complete data estimates. Only the rate functions for the

first period are underestimated. The 50 rate parameters of the imputed data sets

show considerable variation, as can be seen in the large proportion of the between-

imputation variance BD on the total variance TD, presented in Table 2. The other

structural parameters also show reasonably large proportions of between-imputation

variance, ranging from 13% to 26% for the MI-BERGM procedure and 13% to

28% for the MI-SAOM procedure.
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In the presented example data, it did not make a meaningful difference if

the first wave was imputed by a Bayesian ERGM or a stationary SAOM. The

differences in parameter estimates and standard errors are negligible and do not

indicate any advantage for one of the two options.

It is important to emphasize that this limited illustration is not an exhaustive

comparison of the methods and performance depends on a multitude of factors,

such as missing data mechanism, type of non-response, and non-response rate. Es-

pecially inclusive sampling was not designed as a primary missing data treatment,

but as last resort when the SAOM does not converge due to a large proportion of

missing data.

Fig. 1: Estimated SAOM  parameters for the complete data and  five treated incomplete
data sets. The error bars represent ±1 standard error.
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6. DISCUSSION

In this study, we introduced a multiple imputation method for SAOMs and demon-

strated it on an empirical data set with simulated missing data. The results sug-

gest that multiple imputation performs as well and often better than the default

procedure within the SIENA software and the other missing data procedures. Es-

pecially standard errors seem to be estimated more reliably. The large standard

errors found for the simpler methods were not surprising, given that the estimation

of the parameters was based on considerably less data.

This study gives an introduction and small demonstration of the proposed

procedure and not a thorough investigation. Future studies are required to deter-

mine the actual reduction in bias and verify the impact of the various choices a

researcher can make in the imputation model. The proposed procedure needs to be

tested on a larger sample of different networks. This will allow reliable estimation

of the reduction in biases of parameters and standard errors.

Additionally, the current study only explored the procedure under MCAR.

Future research has to investigate the performance under other missing data mech-

anisms. Although some participants are likely to be missing completely at ran-

Tab. 2: Ratio  of between imputation variance  on the total variance  (BD /TD ).

1st-ERGM MI-BERGM MI-SAOM

Friendship rate 1 0.11 0.26 0.25

Friendship rate 2 < 0.01 0.20 0.22

Density 0.01 0.12 0.13

Reciprocity 0.01 0.26 0.23

GWESP 0.01 0.16 0.21

GWESP × Reciprocity 0.01 0.23 0.28

Indegree popularity square root 0.01 0.19 0.20

Outdegree activity  square root 0.01 0.13 0.13

Ego alcohol consumption 0.02 0.14 0.15
Alter alcohol consumption 0.01 0.16 0.14

Alcohol  consumption similarity 0.03 0.13 0.17

Alcohol  consumption rate 1 < 0.01 < 0.01 < 0.01

Alcohol  consumption rate 2 < 0.01 < 0.01 < 0.01

Alcohol linear effect < 0.01 0.01 0.01

Alcohol  quadratic effect 0.01 0.03 0.03

Average simil. alter alcohol 0.03 0.10 0.09
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dom, there also might be structural reasons for participants to not participate in

the study or withhold information. It is important to investigate how vulnerable

multiple imputation is to biases when the data are missing not at random or miss-

ing depending on a covariate.

Further research is required to determine the influence of the imputation

model and the procedure with which the parameters used for imputation are ob-

tained. Theoretically, proper multiple imputation, using Bayesian estimation of

SAOMs to generate distributions of the model parameters of the imputation mod-

els, should lead to unbiased results under MCAR or MAR.

In addition, the impact of the first wave imputation needs to be evaluated.

While BERGMs provide overall better draws from the respective parameter dis-

tribution, stationary SAOMs fit conceptually better to the SAOM used for further

modeling of the data. They are also easier to adapt to incorporate imputation of co-

evolving behavioral variables or multiplex network structures. The proposed pro-

cedure should also be able to impute missing behavioral data. The simulated net-

work evolution trajectories do not only simulate tie changes, but simulate changes

on all dependent variables, including behaviors. Maximum likelihood simulations

can therefore also be used to multiply impute missing behavior variables.

In spite of these unanswered questions and the limited illustration, the pro-

posed procedure seems theoretically superior to current alternatives (the default

MoM estimation implemented in the SIENA software and the procedures pro-

posed by de la Haye et al., 2017, and Hipp et al., 2015), which is also supported

by our small example. It utilizes more of the available information and conserves

the relationships between all variables.
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