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Abstract. This paper explores improvements in prediction accuracy and inference capabi-
lity when allowing for potential correlation in team-level random effects across multiple
game-level responses from different assumed distributions. First-order and fully exponential
Laplace approximations are used to fit normal-binary and Poisson-binary multi- variate
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1. INTRODUCTION

Traditionally, algorithms for ranking sports teams and predicting sporting out-
comes utilize either the observed margin of victory (MOV) (Henderson, 1975) or
the binary win/loss information (Karl, 2012; Mease, 2003), along with potential
covariates such as game location (home, away, neutral). In contrast, we jointly
model either MOV or win/loss along with a separate game-level response, which
is shown to improve predictions under certain model specifications. We present
a set of non-nested generalized linear mixed models to jointly model the MOV or
win/loss along with a game outcome, such as penalty yards or number of penalties,
shots on goal, turnover margin. Multiple response distributions are necessary to
model a variety of sporting outcomes and are available in the model and presented
R package for executing the model. For example, the normal distribution is most
suitable to model the score in a high scoring sport such as basketball, where as a
Poisson model may be more appropriate for scores in hockey or soccer (football).
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In this paper, we explore the benefits of modeling these responses jointly, as-

suming conditional independence given correlation between distinct team effects

for each response. For some responses, the joint models benefit from signifi-

cantly improved median log-loss and absolute residuals of cross-validation pre-

dictions. Furthermore, the joint model provides the ability to test for significant

relationships between high-level hierarchical effects (e.g. random team effects)

since significant predictors for outcomes at the game level may not be impor-

tant at the team level. We have published our R (R Core Team, 2017) code for

the presented models via the package mvglmmRank: the appendix provides a

demonstration of the package(http://cran.r-project.org/). The data used

to produce the results in this paper are made available at github.com/10-01/

NCAA-Football-Analytics.

Previous works have also considered the joint modeling of team ratings and

outcome prediction. Annis and Craig (2005) present a two-stage, hierarchical

“hybrid ranking system” that can be considered an average of win/loss and point-

scoring models, focusing on the prediction of NCAA football rankings. In stage

1, the win/loss indicator is modeled. In stage 2, the scores are predicted condi-

tioned on the win/loss outcome in stage 1. Each team is modeled with an of-

fensive (fixed) effect and a defensive (fixed) effect. Model estimation relies on

generalized estimating equations (GEE). The win/loss indicators are modeled by

comparing the “merit” of each team, which is defined as the sum of the offensive

and defensive ratings. Baio and Blangiardo (2010) use a similar point-scoring

model (in a Bayesian framework), fitting separate “attack” and “defense” values

for each team. Several other papers have considered modeling separate offense

and defense effects (Baio and Blangiardo, 2010; Karlis and Ntzoufras, 2003; Ruiz

and Perez-Cruz, 2015).

While Annis and Craig (2005) use the sum of a team’s offensive and de-

fensive effects to represent their winning propensity in a logistic regression, we

build upon the Poisson-binary model proposed by Karl et al. (2014) and fit a sep-

arate win-propensity random effect for each team. This effect is correlated with,

rather than determined by, the offensive and defensive effects from the point-

scoring (yards-recorded, etc) model. These three team-level effects are modeled

as random effects in a multivariate generalized linear mixed model (GLMM). This

allows us to measure and compare the relationships between offensive/defensive

ability (with respect to a variety of responses) and winning propensity. The binary

win/loss indicators are jointly modeled with the team scores or other responses by

allowing the random team effects in the models for each response to be correlated.
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Assuming a normal distribution for the team effects imposes a form of regulariza-

tion, allowing the binary model to be fit in the presence of undefeated or winless

teams (Karl, 2012).

Suppose a binary win/loss indicator is jointly modeled, then for the binary

win/loss indicators, an underlying latent trait or “win-propensity” rating is as-

signed to each team. These ratings are fit simultaneously with two game level

response-propensity ratings: offensive and defensive. The model presented al-

lows for potential correlation between all three ratings by fitting them using ran-

dom effects assuming a multivariate normal distribution. To illustrate, this paper

examines how the joint modeling of win/loss indicators and four different game-

level responses in American football (yards per play, sacks, fumbles, and score

described in section 2.4) may lead to an improvement in the cross validation pre-

dictions of both responses versus the traditional model. The results indicate that

a higher correlation between the win/loss response and the game-level response

lead to improved cross-validated predictions.

Section 2 describes a set of multivariate generalized linear mixed models for

predicting game outcomes, and section 3 describes the computational approach

used by the mvglmmRank package. Section 4 compares cross-validation pre-

diction accuracy of several game-level responses across three American college

football seasons. Section 5 evaluates the performance of the joint model across

nineteen college basketball (NCAA) tournaments. Appendix A provides a demon-

stration of the implementation of the joint model in the mvglmmRank R package.

2. THE MODEL

When modeling n games, let ri be a binary indicator for the outcome of the i-th
game for i = 1, . . . ,n, taking the value 1 with a home team “win” and 0 with a

visiting team “win”, where “win” can be defined to be outscoring the opponent,

receiving fewer penalties than the opponent, etc. A neutral-site indicator is used

to indicate that the home team was designated arbitrarily. The home-win indica-

tors are concatenated into the vector r= (r1, . . . ,rn)
′. We will use yih to denote the

score (or penalties, yards-per-play, etc.) of the home team in the i-th game, and yia

to denote the score of the away team, letting yi = (yih,yia)
′. The scores are con-

catenated into the vector y = (y′
1, . . . ,y

′
n)

′. We will assume separate parametric

models for y and r; however, these models will be related by allowing correlation

between the random team effects present in each model.

Suppose we wish to model the outcome of a game between the home team,

H, and the away team, A. We assume that each team may be described by three
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potentially related characteristics: their offensive rating (bo), defensive rating (bd),

and a rating (bw) that quantifies their winning propensity. Heuristically, we want

to find the ratings that satisfy

E[yih] = f1(b
o
h −bd

a)

E[yia] = f1(b
o
a −bd

h)

P(ri = 1) = f2 (b
w
h −bw

a )

for some functions f1 and f2. To do this, we will specify the functions f1 and f2,

the assumed distribution of y conditional on the offensive and defensive ratings,

the assumed distribution of r conditional on the win propensity ratings, and the

assumed distribution of (and relationship between) the ratings. Due to the binary

nature of ri, f2 will necessarily be a nonlinear function. The offense and defense

ratings for each team are calculated while controlling for the quality of opponent,

implicitly considering strength of schedule as in Harville (1977), Annis and Craig

(2005), and Karl (2012). By contrast, raw offensive and defensive totals inflate

the ranking of teams that play a set of easy opponents and penalize those that play

a difficult schedule.

We model the offensive, defensive, and win propensity ratings of the j-th
team for j = 1, . . . , p with random effects bo

j , bd
j , and bw

j assuming

b j = (bo
j ,b

d
j ,b

w
j )

′ ∼ N3(0,G
∗),

where G∗ is an unstructured covariance matrix and p represents the number of

teams being ranked. In addition, b ∼ N(0,G), where b = (b′
1, . . . ,b

′
p)

′ and G is

block diagonal with p copies of G∗. We allow y|b to follow either a normal or

a Poisson distribution. While we use y|b as a notational convenience, we do not

condition y on bw. Likewise, we will use r|b when we may more explicitly write

r|bw.

2.1. BIVARIATE NORMAL OUTCOMES

We may assume a bivariate normal distribution for the outcomes (e.g. scores) of

the i-th game yi|b ∼ N2(Xiβ+Zib,R∗). In the error covariance matrix, R∗,

we model the potential intra-game correlation between the responses of opposing

teams: the (1,1) term models the conditional variance of the home team responses,

the (2,2) term models the conditional variance of the away team responses, and

the (1,2)=(2,1) term models the conditional covariance of the home and away

team responses. y|b ∼ N2n(Xβ+Zb,R), where R is block diagonal with n
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copies of R∗, and X and Z are the concatenation of the Xi and Zi, which are

defined below. β may be used to model any fixed effect covariates, though we

only consider a parsimonious model with a mean and a home field effect, that

is, β = (βh,βa,βn)
′ where βh is the mean home response, βa is the mean away

response, and βn is the mean neutral site response. The design matrix Xi is a

2× 3 matrix with an indicator for the “home” team in the first row and for the

“away” team in the second row. If the home and away teams were designated

arbitrarily for a neutral site game, then

Xi =

(
0 0 1

0 0 1

)
.

The error terms of the arbitrarily designated teams are still modeled with the cor-

responding “home” and “away” components of R∗, but the relative infrequency

of neutral site games in most applications minimizes any impact this may have.

Even if every game in the data set is a neutral site game, R̂∗ will still be unbi-

ased (since the selection of the “home” team is randomized), though inefficient

(since two parameters are being used to estimate the same quantity, halving the

sample size used to estimate each parameter). In such situations, the two diagonal

components of R∗ should be constrained to be equal.

Zi is a 2×3p matrix that indicates which teams competed in game i. If team

k visits team l in game i, then in its first row, Zi contains a 1 in the position

corresponding to the position of the offensive effect of team l, bo
l , in b, and a −1

in the position corresponding to the position of the defensive effect, bd
k , of team k.

In its second row, Zi contains a 1 in the position corresponding to the position of

the offensive effect of team k, bo
k , in b, and a −1 in the position corresponding to

the position of the defensive effect, bd
l , of team l. This is a multiple membership

design (Browne et al., 2001) since each game belongs to multiple levels of the

same random effect. As a result, Z does not have a patterned structure and may

not be factored for more efficient optimization, as it could be with nested designs.

The likelihood function for the scores under the normally distributed model is

f (y|b) =
n

∏
i=1

[
(2π)−1|R∗|−1/2exp

{
−1

2
(yi −Xiβ−Zib)′R∗−1(yi −Xiβ−Zib)

}]
.(1)

This is a generalization of the mixed model proposed by (Harville, 1977) for rating

American football teams.
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2.2. TWO POISSON OUTCOMES

We may alternatively assume a Poisson distribution for the conditional responses

(e.g. scores, turnovers). When modeling y|b using a GLMM with a Poisson dis-

tribution and the canonical log link, it is not possible to model the intra-game

correlation with an error covariance matrix since the variance of a Poisson dis-

tribution is determined by its mean. Instead, we may optionally add an addi-

tional game-level random effect, ai, and thus an additional variance component,

σ2
g , to G. In this case, we recast b as b = (b1, . . . ,bp,a1, . . . ,an)

′ and G =

block diag(G∗, . . . ,G∗,σ2
g In).

yi∗|b ∼ Poisson(μi∗)
log(μi∗) = Xi∗β+Zi∗b

where ∗ may be replaced by h or a. Regardless of whether or not the game-level

effect is included, the likelihood function may be written as

f (y|b) =
n

∏
i=1

∏
∗∈{a,h}

[
1

yi∗!
exp{yi∗(Xi∗β+Zi∗b)}exp{−exp [Xi∗β+Zi∗b]}

]
.

(2)

For high-scoring sports such as basketball, the Poisson distribution is well ap-

proximated by the normal. However, the option to fit Poisson scores will remain

useful when modeling low-scoring sports (e.g. soccer, baseball, hockey) or low-

count outcomes such as number of penalties, as discussed in section 4.

2.3. BINARY OUTCOMES

Rather than modeling the team scores resulting from each contest, we may model

the binary win/loss indicator for the “home” team. Predictions for future out-

comes are presented as the probability of Team H defeating Team A, as opposed

to the score predictions for each team that are available when modeling the scores

directly. Karl (2012) considers multiple formulations of a multiple membership

generalized linear mixed model for the binary outcome indicators: we will focus

on one of those. Letting πi = P(ri = 1), we model the probability of a home win

with a GLMM assuming a Bernoulli conditional distribution and use a probit link,

ri|b ∼ Bin(1,πi)

Φ−1(πi) = Wiα +Sib

where Φ denotes the normal cumulative distribution function. Ties are handled by

awarding a win (and thus a loss) to each team.
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The home field effect is measured by α , with a coefficient vector W . Wi

takes the value 0 if the i-th game was played at a neutral site and 1 otherwise.

The design matrix S for the random effects contains rows Si that indicate which

teams competed in game i. If team k visits team l in game i, then Si is a vector

of zeros with a 1 in the component corresponding to the position of bw
l in b and

a −1 in the component corresponding to bw
k . Note that r is conditioned only on

bw, and not on (bo,bd). Pragmatically, all of the components in the columns of S
corresponding to the positions of bo and bd in b are 0. The likelihood function for

the binary indicators is

f (r|b) =
n

∏
i=1

[
Φ
{
(−1)1−ri [Wiα+Sib]

}]
. (3)

2.4. THE JOINT MODEL

Traditionally, teams ratings have been obtained by maximizing only one of the

likelihoods (1), (2), or (3). Karl et al. (2014) propose the joint Poisson-binary

model for team scores and game outcomes, focusing on the derivation of com-

putational details, which are summarized in the next section. In this paper, we

consider more general applications to other game-level responses. The joint like-

lihood function 4

L(β,G,R) =

�
f (y|b) f (r|b) f (b)db (4)

simultaneously maximizes (3) along with a choice of either (1) or (2) where f (b)
is the density of b ∼ N(0,G). The key feature of the joint model is the pair of off-

diagonal covariance terms between (bo,bd)′ and bw in the G matrix. If these co-

variance terms were constrained to 0 then the resulting model fit would be equiva-

lent to that obtained by modeling the two responses independently. Thus, the joint

model contains the individual normal/Poisson and binary models as a special case:

the additional flexibility afforded by Model (4) may lead to improved predictions

for both responses when team win-propensities are correlated with their offensive

and defensive capabilities. A similiar normal-binary correlated random effects

model was employed by Karl et al. (2013a) in order to jointly model student test

scores in a value-added model with binary attendance-indicators in order to ex-

plore sensitivity to the assumption that data were missing at random.

In addition to fitting each of the response types described in the previous

subsections individually, the mvglmmRank package offers options to fit the joint

normal-binary and Poisson-binary models. Just as the individual score and out-

come models may make opposite predictions about the game outcome, the joint



196 Broatch, J., Karl, A.

model occasionally will predict a team to outscore its opponent in the score model

while also predicting less than a 50% chance of that team winning. This is a re-

sult of modeling distinct team rather than constraining them to be equal to the

sum of offensive and defensive ratings, as done by Annis and Craig (2005). The

benefit of this approach is that the relative strength of the defense/win-propensity

and offense/win-propensity correlations may be compared. The outcomes pre-

dicted by the binary component of the joint model focus on the observed win/loss

outcomes while allowing the team win-propensity ratings to be influenced by the

team offensive and defensive ratings. On the other hand, the outcomes predicted

by the score component (checking which team has a larger predicted score) give a

relatively larger weight to the observed scores, making the predictions susceptible

to teams running up the score on weak opponents (Harville, 2003). As demon-

strated in section 5, the joint model tends to produce improved probability esti-

mates over those produced by the binary model.

3. COMPUTATION

The likelihood functions in Equations (2), (3) and (4) contain intractable integrals

because the random effects enter the model through a nonlinear link function.

Furthermore, the p-dimensional integral in each equation may not be factored as

a product of one-dimensional integrals. Such a factorization occurs in longitudi-

nal models involving nested random effects. However, the multiple membership

random effects structure of our model results in a likelihood that may not be fac-

tored. It is possible to fit multiple membership models in SAS, using the EFFECT

statement of PROC GLIMMIX. Karl (2012) provides code for fitting the binary

model in GLIMMIX. There are, however, advantages to using custom-written

software instead. Building the model fitting routine into an R package makes the

models available to readers who do not have access to SAS. Secondly, GLIMMIX

does not currently account for the sparse structure of the random effects design

matrices, resulting in exponentially higher memory and computational costs than

are required when that structure is accounted for (Karl et al., 2013b). Thirdly,

the EM algorithm may be used to provide stable estimation in the presence of a

near-singular G matrix (Karl et al., 2013b, 2014), whereas GLIMMIX relies on a

Newton-Raphson routine that tends to step outside of the parameter space in such

situations.

Finally, we are able to use more accurate approximations than the default

pseudo-likelihood approximation (Wolfinger and O’Connell, 1993) of GLIMMIX,

including first-order and fully exponential Laplace approximations (Karl et al.,

2014; Tierney et al., 1989). (GLIMMIX is capable of using the first-order Laplace
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approximation, but we have not had success using it with the EFFECT statement).

In line with the theory and simulations presented by Karl et al. (2014), 17 of the

18 basketball tournaments in section 5 are modeled more accurately in the binary

model as fully exponential corrections are applied to the random effects vector. In

those same seasons, the predictions show further improvement with the addition

of fully exponential corrections to the random effects covariance matrix.

Karl et al. (2014) describe the estimation of multiple response generalized

linear mixed models with non-nested random effects structures and derive the

computational steps required to estimate the Poisson-binary model with an EM

algorithm. The models presented here are special cases of that class of models.

The exact maximum likelihood estimates are obtained for the normal model when

team scores are modeled alone. The mvglmmRank package implements these

methods without requiring end-user knowledge of the estimation routine. Sec-

tion A demonstrates the use of the package in the context of modeling college

football yards-per-game with home-win indicators.

The mvglmmRank package reports the Hessian of the parameter estimates.

The inverse of this matrix is an estimate for the asymptotic covariance matrix of

the parameter estimates, and it ought to be positive-definite (Demidenko, 2004).

A singular Hessian suggests that the model is empirically underidentified with

the current data set (Rabe-Hesketh and Skrondal, 2001). This can be caused by

a solution on the boundary of the parameter space (e.g. zero variance compo-

nents, linear dependence among the random effects), by multicollinearity among

the fixed effects, convergence at a saddle point, or by too loose of a convergence

criterion. Rabe-Hesketh and Skrondal (2001) recommend checking the condition

number (the square root of the largest to the smallest eigenvalue) of the Hessian.

However, the Hessian is sensitive to the scaling of the responses, while the corre-

lation matrix of the inverse Hessian (if it exists) is invariant. As such, we prefer to

check the condition number of this correlation matrix. While the joint model for

scores and win/loss outcomes for the data set presented by Karl et al. (2014) does

not show signs of empirical underidentification, this model does show such signs

for other data sets when modeling scores and win/loss outcomes. This seems rea-

sonable, since the win/loss indicators are simply a discretized difference of the

team scores. While the model parameters are unstable in the presence of empir-

ical underidentification, the predictions produced by the model remain useful as

evidenced by improvement in cross validation error rates, a point discussed in sec-

tion 4. Joint models for other responses (e.g. fumbles) with the win/loss indicators

do not typically show symptoms of underidentification.
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4. AMERICAN COLLEGE FOOTBALL OUTCOMES

This section considers several different game-level outcomes from the 2005–2013

American College Football seasons. The models presented here are fit inde-

pendently across each of the nine seasons. The data were originally furnished

under an open source license from cfbstats.com, and are now maintained at

https://github.com/10-01/NCAA-Football-Analytics. As mentioned in

section 1, the standard modeling outcomes margin of victory (MOV) (Henderson,

1975) and the binary win/loss information (Karl, 2012; Mease, 2003), along with

potential covariates such as game location (home, away, neutral) will be used. To

illustrate the joint model, we will use recordings for game-level responses: sacks,

yards per play, and fumbles in addition to the game-scores. For those unfamiliar

with American Football, a “sack” is recorded when a defensive player “sacks” the

quarterback, who receives the ball to begin a play, before they are able to make

a positive move forward toward the goal. A “sack” has a positive impact on the

defensive ability of a team. Sacks are relatively infrequent. The leading American

Football teams average about 3 sacks per game. “Yards per play” is calculated by

an offensive move towards the goal, regardless of type of play (e.g. run or pass).

A football field is 100 yards, and a team has 4 attempts to move the football 10

yards down the field at a time. A higher value of “yards per play” would indicate

a higher offensive ability. A “fumble” is recorded when a player loses the ball on

the ground and either team is able to pick it up. A “fumble lost” would indicate

a turnover to the other team. This paper will use “fumbles” rather than “fumbles

lost” to demonstrate the effectiveness of the joint model when a low correlated

or irrelevant response is used. We have made the processed data for each season

available.

To compare the effectiveness of the various models, the predictions for the

home-win indicator for game i are scored against the actual game outcomes using

a log-loss function:

log-lossi =−yi log(ŷi)− (1− yi) log(1− ŷi) (5)

where ŷi is the predicted probability of a home-team win in game i, yi is the

outcome of game i (taking the value 1 with a home-team victory and 0 otherwise).

A smaller value of log-loss represents a more accurate prediction.

Using 10-fold cross-validation for each of the seasons, we compare the log-

loss of predictions from a traditional binary model for home-win indicators to

those from the proposed binary-normal model (jointly modeling home-win and

yards-per-play) and to those from two binary-Poisson models (home-win and

sacks, home-win and fumbles) using a sign test. The sign test allows us to mea-
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sure whether a significant (α = 0.05 in this section) majority of games experience

improved prediction under an alternative joint model. Likewise, a sign test is

used to compare the absolute residuals for score, fumble, and sack predictions to

measure improvement due to the joint modeling of the binary outcome with these

responses. Pragmatically, a significant sign test on the median difference between

the log-losses from two models indicates that wagers based on the preferred model

would be expected to perform significantly better when equal wagers are placed

for all games.

As discussed in section 3, there are some cases in which the Hessian of the

model parameters is not positive-definite at convergence. This can indicate in-

stability in the parameter estimates; however, the predictions resulting from these

models are still useful, as demonstrated by the improved performance on (hold-

out) test data. This is a generalization of the behavior of linear regression models

in the presence of multicollinearity.

In this section, we refer to the (bivariate) normal-binary model as NB. PB0

refers to the Poisson-binary model with no game-level random effect, while PB1

indicates the Poisson-binary model with a game-level random effect. B, N, P0,

and P1 refer to the individual binary, normal, Poisson with no game effect, and

Poisson with a game effect models, respectively. We report whether there is a

significant difference between the home and away mean values from the individ-

ual models N, P0, and P1 (the home-field effect is significant in all years for the

home-win outcomes in model B). These results are interesting since the multi-

ple membership models account for the quality of the opponents that these values

were recorded against. The contrasts between the home and away parameters in

the mean vector are tested using the estimated Hessian.

This section does not account for the multiple comparisons that are performed

when declaring significance across seasons; however, the p-values are reported in

the tables. Using the tables, it is informative to compare the optimal model identi-

fied across seasons. For example, the sacks/home-win model shows improved pre-

dictions for sacks over the individual model for sacks in each of the eight seasons,

even though only two of those improvements are significant. We would expect to

see a preference for the individual model in cross-validation if the jointly modeled

response were irrelevant, and a uniform distribution on the resulting p-values, as

is the case in Table 3 for the fumble models.

4.1. YARDS PER PLAY AND OUTCOMES

When jointly modelling the yards per play and outcome, the joint normal-binary

(NB) model provides significantly better predictions for Win/Loss outcomes than
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individual binary model (B) in all years (see Table 1). There is slightly weaker

evidence of improvement in the fit of the yards per play in the joint model over

the individual normal model: comparing the absolute residuals from each model,

there is a significant preference (via the sign test) for the joint model in all but

one of the eight years (2006). In all eight seasons presented, there is a significant

game location effect: home teams record more yards per play than visiting teams

(p-value for all years < 0.0001). There is a weak correlation between yards per

play recorded by opponents within a game, ranging from 0.05 to 0.15.

4.2. SACKS AND OUTCOMES

The joint model PB0 (Poison-Binary with no game-level random effects) for sacks

and home-win indicators significantly outperforms the individual model B with

respect to log-loss for the home-win indicators in each year (see Table 2). Like-

wise, PB0 outperforms the individual sack model P0 in each year (significantly so

in two years). While the joint modeling of sacks and outcomes improves the pre-
dictions of both responses, the inclusion of a game-level effect in the sack model

(PB1) leads to worse predictions in each year (significant in all years for log-loss

for the outcomes and in three years for the absolute residuals of the sacks). This

indicates that there is no intra-game correlation in the number of sacks recorded

by opponents. There was a larger frequency of sacks recorded by the home team

in each year (significant in four of the eight years: 2007, 2008, 2009, 2011).

Tab. 1: Yards per play (YPP) and binary home-win indicators are modelled both individually
(N and B respectively) and jointly (NB). “Best” Model for YPP indicates which model,
N or NB, provided the best YPP prediction measured by the minimum absolute residual
for the majority of games in each year. “Best” Model for W/L indicates which model
produces the best prediction, B or NB, measured by log-loss on the predicted win-
probabilities from each model for the majority of games in each year. *Indicates a
significant preference over comparison model(s).

Year “Best” “Best”
Model Model

for YPP for W/L
2005 NB NB*
2006 N NB*
2007 NB* NB*
2008 NB NB*
2009 NB NB*
2010 NB* NB*
2011 NB NB*
2012 NB NB*
2013 NB* NB*



Multivariate Generalized Linear Mixed Models for Joint Estimation of Sporting … 201

4.3. FUMBLES AND OUTCOMES

Joint modeling of fumbles per game along with the game outcome did not lead
to significant differences in log-loss for the outcome predictions in any season,
nor did it provide any improvement in the predictive accuracy for the number of
fumbles (see Table 3). Furthermore, model P0 outperformed model P1 in every
season (significantly so in three seasons), suggesting that there is not a substantial
correlation between the number of fumbles recorded by opponents within a game.

The home-field effect is not significant in any of the years for P0. This
suggests that there is not a tendency for teams to fumble more or less often while
traveling.

By contrast, a logistic regression on the home-win indicators against the
number of home fumbles and the number of away fumbles indicates that these are
significant predictors for whether the home team will win. Likewise, the home-win
indicators significantly improve predictions for the number of home and away
fumbles in a Poisson regression. This provides a good contrast between jointly
modeling two responses and including one of the responses as a factor in a model
for the other: the former searches for a correlation between latent team effects from
each of the responses, while the later considers only relationships between the
responses on an observation-by-observation basis. In other words, the joint model
considers relationships between higher levels in the hierarchy of the models.

Tab. 2: Sacks and binary home-win indicators are modelled both individually with a Poisson
model (P0 and B respectively) and jointly (PB0 or PB1). “Best” Model for Sacks
indicates which model, P0, PB0, or PB1, provided the best sack prediction measured by
the minimum absolute residual for the majority of games in each year. “Best” Model for
W/L indicates which model produces the best prediction, B, PB0, or PB1, measured by
log-loss on the predicted win-probabilities from each model for the majority of games

Year “Best” “Best”
Model Model

for Sacks for W/L
2005 PB0 PB0*
2006 PB0 PB0*
2007 PB0 PB0*
2008 PB0 PB0*
2009 PB0 PB0*
2010 PB0* PB0*
2011 PB0 PB0*
2012 PB0* PB0*
2013 PB0 PB0*
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4.4. SCORES AND OUTCOMES

In each year, model PB1 significantly outperforms the predictions for the home-

win indicators from both model B and model NB (see Table 4). This observation

comes in spite of the fact that the estimated Hessian was nearly singular in each

year, due to the nearly linear relationship between team win-propensities, team

offensive (score) ratings, and team defensive (score) ratings. In this case, the

conditional model of Annis and Craig (2005) provides a more accurate frame-

work for the data generation process, accounting for the deterministic relation-

ship between the two responses. Nevertheless, this situation highlights the utility

of jointly modeling responses in general. Despite the parameter instability (via

the inflated standard errors resulting from the near-singular Hessian) of the joint

model in the extreme case of modeling scores with the home-win indicator, the

home-win predictions still show improvement over those from model B. In fact,

in each year the score/home-win model significantly outperforms the yards-per-

play/home-win model, which in turn outperforms the sacks/home-win model with

respect to log-loss for the home-win predictions.

P1 outperforms P0 in every year with respect to absolute residuals for the

score predictions, significantly so in four of those years. Furthermore, there are

significantly better results from PB1 over PB0 in log-loss for home-win predic-

Tab. 3: Fumbles and binary home-win indicators are modelled both individually with a Poisson
model (P0 or P1 and B respectively) and jointly (PB0 or PB1). “Best” Model for Fumbles
indicates which model, P0, P1, PB0, or PB1, provided the best fumble prediction
measured by the minimum absolute residual for the majority of games in each year.
“Best” Model for W/L indicates which model produces the best prediction, B, PB0, or
PB1, measured by log-loss on the predicted win-probabilities from each model for the
majority of games in each year. *Indicates a significant preference over comparison
model(s).

Year “Best” “Best”
Model Model

for Fumbles for W/L
2005 P0 PB0
2006 PB0 PB0
2007 P0 PB0
2008 PB0 B
2009 PB0* PB0*
2010 PB0 PB0
2011 PB0 PB0
2012 PB0 B
2013 PB0 PB0
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tions in two of the years. Together, these results suggest that there is an important

intra-game correlation between opponent scores. Yet, no significant differences

appear with respect to the absolute score residuals appear between models N and

P1, or between PB1 and P1. This indicates that the normal and Poisson models for

scores perform similarly, and that the game-score predictions are not influenced

by the joint modeling of the home-win indicators. This last point is unsurprising

since the home-win indicators are a discretized version of a difference of the team

scores.

4.5. ESTIMATED RANDOM EFFECT COVARIANCE MATRICES

For the 2005 season, the random effect covariance matrices are presented in ta-

ble 5 (the 2006-2013 season are omitted for brevity). The correlation matrices are

printed below the covariance matrices. Recall, the columns correspond to the “‘of-

fensive” effect, the “defensive” effect, the win-propensity effect, and the game-

level effect (score-outcome model only). The correlation matrices are printed be-

low the covariance matrices. The words offensive and defensive appear in quotes

as a reminder that the interpretation of these effects depends on the model struc-

ture described in section 2. For example, in the sacks-outcomes model, we use

the number of sacks recorded by the home team (against the visiting quarterback)

Tab. 4: Scores and binary home-win indicators are modelled both individually with a Poisson
model (P0 or P1 and B respectively) and jointly (PB0 or PB1). “Best” Model for Scores
indicates which model, P0, P1, PB0, or PB1, provided the best score prediction measured
by the minimum absolute residual for the majority of games in each year. “Best” Model
for W/L indicates which model produces the best prediction, B, PB0, or PB1, measured
by log-loss on the predicted win-probabilities from each model for the majority of games
in each year. *Indicates a significant preference over comparison model(s).

Year “Best” “Best”
Model Model

for Scores for W/L
2005 P1 PB1*
2006 PB1 PB1*
2007 P1 PB1*
2008 P1 PB1*
2009 PB1 PB1*
2010 PB1 PB1*
2011 P1 PB1*
2012 P1 PB1*
2013 P1 PB1*
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as the home response, and likewise define the away response. Thus, a larger of-

fensive effect in the sacks-outcomes model for a given team indicates a larger

propensity for that team’s defense to sack the opposing quarterback.

Additionally, the estimate for the win-propensity variance components from

the binary-only model are (0.43,0.63,0.65) for three increasingly accurate ap-

proximations: first-order Laplace, “partial” fully exponential Laplace, and fully

exponential Laplace (Karl et al., 2014). Notice how the estimates for this compo-

nent from the fumbles-outcomes models are typically similar to the estimate from

the first-order approximation (which was used for all of the joint models). This

is not surprising, since no significant differences in the outcome prediction accu-

racy was noted with the joint modeling of fumbles in section 4.3. By contrast, the

sacks-outcomes, yards/play-outcomes, and scores-outcomes models, which were

found to produce progressively more accurate outcome predictions, generate pro-

gressively larger estimates for the win-propensity variance component. In the

same way that the more-accurate fully exponential Laplace approximation tends

to correct for the downward bias observed in variance components for a binary

response (Breslow and Lin, 1995; Lin and Breslow, 1996), the joint-modeling of

a relevant response appears to inflate the variance component estimate.

Game-level Covariance Correlation

Response

Yards Per Play

⎡
⎣0.55 0.22 0.58

0.35 0.44

0.84

⎤
⎦

⎡
⎣1.00 0.50 0.85

1.00 0.82

1.00

⎤
⎦

Sacks

⎡
⎣0.07 0.03 0.17

0.09 0.14

0.55

⎤
⎦

⎡
⎣1.00 0.42 0.89

1.00 0.61

1.00

⎤
⎦

Fumbles

⎡
⎣0.02 0.00 −0.03

0.01 −0.05

0.44

⎤
⎦

⎡
⎣1.00 −0.10 −0.31

1.00 −0.79

1.00

⎤
⎦

Scores

⎡
⎢⎢⎣

0.11 0.07 0.35 0.00

0.09 0.29 0.00

1.20 0.00

0.07

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.00 0.71 0.94 0.00

1.00 0.90 0.00

1.00 0.00

1.00

⎤
⎥⎥⎦

Tab. 5: Random Effect Covariances and Correlation Matrices for the 2005 Season for the
Binary model with each game level response (upper triangle). From left to right in each
matrix, the columns correspond to the “offensive” effect, the “defensive” effect, the
win-propensity effect, and the game-level effect (score-outcome model only).
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Fig. 1: Football offensive and defensive yards-per-play ratings from the normal-binary
model for the 2012 season. The shading and marker sizes indicate the win propensity

rating of each team.

The (1,2) component of the matrices in the score-outcome model gives the

correlation between offensive and defensive team score ratings. It ranges from

0.77 for American college football data to −0.3 for the professional basketball

(NBA) data (not shown). We would expect to see a moderate positive correlation

in the American college football data: if schools are able to recruit good offensive

players and coaches, they will likely also be able to recruit good defensive ones.

Interestingly, the offensive and defensive team ratings are negatively correlated

for the NBA data. This may reflect the fact that offense and defense are played by

the same players in basketball.

Likewise, the (1,2) component of the matrices in the yards/play-outcome

model gives the correlation between offensive and defensive team yards-per-play

ratings. Figure 1 plots the team defensive ratings against the team offensive rat-

ings. The shading and sizes of the team markers correspond to the team win

propensity ratings from the normal-binary model. This plot appears similar to the

one based on the score-outcome model in Figure 2 of Karl et al. (2014).

4.6. ESTIMATED ERROR COVARIANCE MATRICES

The bivariate normal-binary model provides an estimate of the intra-game corre-

lation between opposing team outcomes. This section uses yards-per-play as the
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model the team scores and (discretized) binary home-win indicators. By jointly

modeling the team scores and binary game outcomes, the team win-propensities

are influenced by their correlation with team offensive and defensive ratings, thus

incorporating information about the scores into the predicted probabilities from

the binary sub-model. To demonstrate the benefit of the joint model over the indi-

vidual binary model, we compare the fit of the binary and normal-binary models

across the most recent 19 tournaments.

Figure 2 shows that the predicted probabilities produced by joint model NB

outperformed (with respect to mean log-loss for tournament games) those pro-

duced by model B in all years from 1996-2014 except for two. The p-value for

the t-test of the yearly differences in log-loss from the two models is 0.0002. Thus,

the joint model provides a significant improvement in predictive performance for

the NCAA tournament by utilizing observed scores while still producing predicted

probabilities based on a probit model of outcomes.

game-level response. The model revealed an intra-game correlation of 0.17 for

2005, 0.04 for 2006, and 0.13 for 2007. Hence, there is only weak positive cor-

relation between opposing team yards-per-play within games. There might be a

positive relationship due to variance induced by weather conditions, time of day,

time in the football season, etc; however, that relationship does not appear to be

substantial.

5. PREDICTION OF NCAA BASKETBALL TOURNAMENT RESULTS

The annual NCAA Division I basketball tournament provides an excellent occa-

sion for sports predictions. The most popular format of tournament forecasting

requires a prediction for the winner of each bracket spot prior to the beginning of

the first round. By contrast, some contests (Sonas et al., 2014) require predicted

probabilities – as opposed to discrete win/loss prediction – of outcomes for each

potential pairing of teams. This allows the confidence of predictions to be eval-

uated while ensuring that a prediction is made for every match that occurs. We

consider the use of the multivariate generalized linear mixed model (4) to produce

predicted outcome probabilities that depend on the observed team scores as well

as the home-win indicators.

To illustrate the degree to which the model for a response may be influenced

by its conditionally independent counterpart in the joint model (4), we jointly
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6. CONCLUSION

We have developed a combination of multivariate generalized linear mixed mod-
els for jointly fitting normal or Poisson responses with binary outcomes. Joint
modeling can lead to improved accuracy over separate models for the individual
responses. We have developed and introduced the mvglmmRank package for
fitting these models using efficient algorithms. The mvglmmRank package is not
limited to the analysis of football or basketball data: the package is written
generally to allow for the analysis of any sport. Differences in scoring patterns
within each sport can lead to different patterns of fitted model parameters. For
example, basketball produces stronger intra-game score correlations than football.
If soccer, baseball, hockey, or other low-scoring sports are to be analyzed, the
Poisson-binary model may provide a better fit than the normal-binary model.
Furthermore, the estimation routine (Karl et al., 2014) is extremely stable,
meaning more than two responses could feasibly be modeled jointly.

The process of jointly modeling multiple responses via correlated random
effects is useful across a number of applications. For example, Karl et al. (2013a)

Fig. 2: Difference in log-loss for the binary (B) and normal-binary (NB) models across years.
Dotted lines indicate the 95% confidence interval for the mean difference.
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use a similar joint modeling strategy in an analysis of potentially nonignorable
dropout, while Broatch and Lohr (2012) fit multiple student-level measurements in
a joint analysis of a multivariate value-added model.

A. MVGLMMRANK PACKAGE DEMONSTRATION

Scores from the 2012 NCAA Football Bowl Subdivision (FBS) football season
were downloaded from github.com/10-01/NCAA-Football-Analytics. The data
include regular season and conference championship outcomes: bowl results
are not included. We chose to ignore inter-division games, and processed the data
to match the requirements of mvglmmRank. The processed file is available in the
supplementary material. In the following code, the function file.choose() is used
to select this file from a local directory and load it into the game.data data frame.
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Predictions for future results are available via the game.pred function. To il-

lustrate, we will obtain the predictions for the national championship game, in

which Alabama defeated Notre Dame. Alabama averaged 7.25 yards per play,

while Notre Dame averaged 5.49 yards per play. The normal-binary model pre-

dicted those values to be 5.68 and 4.81, respectively, with a 22.2% chance of Notre

Dame defeating Alabama.
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