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Abstract The recent development of more sophisticated spectroscopic methods allows ac-
quisition of high dimensional datasets from which valuable information may be extracted
using multivariate statistical analyses, such as dimensionality reduction and automatic
classification (supervised and unsupervised). In this work, a supervised classification
through a partial least squares discriminant analysis (PLS-DA) is performed on the hy-
perspectral data. The obtained results are compared with those obtained by the other
discrimination functions and the commonly used classification approaches. The results
show that PLS-DA, using three components explains the 97% of the total variance in the
data, and obtains a better-defined partition than other discussed approaches).
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1. INTRODUCTION

The recent development of more sophisticated spectroscopic approaches al-

lows the acquisition of high dimensional datasets from which valuable informa-

tion may be extracted via different multivariate statistical techniques. The high

data dimensionality greatly enhances the informational content of the dataset and

provides an additional opportunity for the current techniques for analyzing such

data (Jimenez and Landgrebe, 1998). For example, automatic classification (clus-

tering and/or classification) of data with similar features is an important problem

in a variety of research areas such as biology, chemistry, and medicine (Galvan

et al., 2006; Hardy et al., 2006). When the labels of the clusters are available, a

supervised classification method is applied. Several classification techniques are

available and described in the literature. However, data derived by spectroscopic

detection represent a hard challenge for the researcher, who faces two crucial
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problems: data dimensionality larger than the observations, and high correlation

levels among the variables (multicollinearity).

Usually, in order to solve these problems (i) a first data compression or re-

duction method, such as principal component analysis (PCA) is applied to shrink

the number of variables; then, a range of discriminant analysis techniques is used

to solve the classification problem, while (ii) in other cases, non-parametric clas-

sification approaches are used to classify directly the original data without us-

ing any dimensionality reduction methods (Agrawal et al., 1998; Bühlmann and

Van De Geer, 2011; Ding and Gentleman, 2005; Jimenez and Landgrebe, 1998;

Kriegel et al., 2009).

In this work, the dataset consists of three different varieties of olives (Moraiolo,

Dolce di Andria, and Nocellara Etnea) monitored during ripening up to harvest

(Bellincontro et al., 2012). Samples containing olives from 162 trees (54 for each

variety), and 601 spectral detections (i.e., dimensions/variables) were performed

using a portable near infrared acousto-optically tunable filter (NIR-AOTF) de-

vice in diffuse reflectance mode from 1100 nm to 2300 nm with an interval of 2.

The use of NIRS on olive fruits and related products is already known; applica-

tions for the determination of oil and moisture content are now considered routine

analyses in comparison with relatively new methodologies, such as nuclear mag-

netic resonance (NMR), or more traditional analytical determinations (Cayuela

and Camino, 2010; Gallardo et al., 2005; Garcia et al., 1996; León et al., 2004).

Bellincontro et al. (2012) affirm that the determination of the optimal fruit

ripening stage in virgin olive oil production is a critical choice based on the best

combination of oil quantity and oil quality. Some of the most important aspects re-

lated to virgin olive oil quality are deeply affected by the olive ripening stage. The

modification of the phenolic fraction, in particular, has been extensively investi-

gated: the concentration of oleuropein reaches relatively high levels in immature

fruit during the growth phase and declines with the physiological development of

the fruit. Then, because of the well-known importance of the phenolic fraction for

oil stability and the sensory and health properties, it is essential to identify the har-

vest period that ensures the ripening stage corresponding to the optimal phenolic

content. Many approaches have been proposed in recent years for the evaluation

of the optimal harvesting period, and Near-infrared spectroscopy (NIRS) can be

considered an interesting, alternative technique for the nondestructive measure-

ment of quality parameters in food crops, including fresh fruit and vegetables.

This paper is based on the use of partial least squares discriminant Analysis

(PLS-DA). The idea is to teste some different chemometric applications of NIR
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spectra, with the aim of predicting qualitative attributes and discriminating cul-

tivar origins using PLS-DA. PLS-DA is a dimensionality reduction technique, a

variant of partial least squares regression (PLS-R) that is used when the response

variable is categorical. It is a compromise between the usual discriminant analysis

and a discriminant analysis on the principal components of the predictor variables.

In particular, PLS-DA instead of finding hyperplanes of maximum covariance be-

tween the response and independent variables finds a linear regression model by

projecting the predicted variables and the observed variables into a new space

(Kemsley, 1996). PLS-DA can provide good insight into the causes of discrimi-

nation via weights and loadings, which gives it a unique role in exploratory data

analysis, for example in metabolomics via visualization of significant variables

such as metabolites or spectroscopic peaks (Brereton and Lloyd, 2014; Kemsley,

1996; Wehrens and Mevik, 2007).

However, for comparison purposes, we also analyze the results obtained by

other commonly used non-parametric classification models such as K-nearest neigh-

bor (KNN), support vector machine (SVM) (Balabin et al., 2010; Joachims, 2005;

Misaki et al., 2010; Tran et al., 2006), and some variants of discriminant func-

tions for sparse data as such as diagonal linear discriminant analysis (DLDA),

maximum uncertainty linear discriminant analysis (MLDA), and shrunken linear

discriminant analysis (SLDA). All the three regularization techniques compute

linear discriminant functions (Clemmensen et al., 2011; Dudoit et al., 2002; Fisher

and Sun, 2011; Guo et al., 2006; Hastie et al., 1995; Thomaz et al., 2006).

The paper is structured as follows: in section 2 we provide a background on

the most commonly used non-parametric statistical methodologies to solve the

classification problem of sparse data (i.e., KNN and SVM) and an overview of

different classifiers derived from linear discriminant analysis (LDA), in section 3

we focus on the PLS-DA model with a deeper examination of the PLS algorithm,

in section 4 we show a comparison of the results obtained by the application of

PLS-DA and those obtained by the other common classification methods, and

finally in section 5 we provide some suggestions and ideas for future research.

2. BACKGROUND

In this section, we present a brief overview of different classifiers that have

been highly successful in handling high dimensional data classification problems,

starting with popular methods such as K-nearest neighbor (KNN) and support

vector machines (SVM) (Dudoit et al., 2002; Zhang et al., 2006) and variants of

discriminant functions for sparse data (Clemmensen et al., 2011). We also exam-
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ine dimensionality reduction techniques and their integration with some existing

algorithms (i.e., partial least squares discriminant analysis (PLS-DA)) (Brereton

and Lloyd, 2014; Kemsley, 1996).

2.1 K-NEAREST NEIGHBOR (KNN)

The KNN method was first introduced by Fix and Hodges (Fix and Hodges,

1989) based on the need to perform discriminant analysis when reliable parametric

estimates of probability densities are unknown or difficult to determine. In this

method, a distance measure (e.g., Euclidean) is assigned between all points in the

data. The data points, K-closest neighbors (where K is the number of neighbors),

are then found by analyzing a distance matrix. The K-closest data points are then

found and analyzed in order to determine which class label is the most common

among the set. Finally, the most common class label is then assigned to the data

point being analyzed (Balabin et al., 2010).

The KNN classifier is commonly based on the Euclidean distance between

a test sample and the specified training samples. Formally, let xi be an input

sample with J features (xi,1, . . . ,xi,J), and n be the total number of input samples

(i = 1, . . . ,n). The Euclidean distance between sample xi and xl (l = 1, . . . ,n) is

defined as

d(xi,xl) =
√

(xi,1 − xl,1)2 + · · ·+(xi,J − xl,J)2. (1)

Using the latter characteristic, the KNN classification rule is to assign to a test

sample the majority category label of its K nearest training samples. In other

words, K is usually chosen to be odd, so as to avoid ties. The K = 1 rule is

generally called the 1-nearest-neighbor classification rule.

Then, let xi be a training sample and x∗i be a test sample, and let ω be the true

class of a training sample and ω̂ be the predicted class for a test sample (ω, ω̂ =

. . . ,Ω), where Ω is the total number of classes. During the training process, only

the true class ω of each training sample to train the classifier is used, while during

testing the class ω̂ of each test sample is predicted. With 1-nearest neighbor rule,

the predicted class of test sample x∗i is set equal to the true class ω of its nearest

neighbor, where zi is a nearest neighbor to x∗i if the distance

d(zi,x∗i ) = min
j
{d(z j,x∗i )}. (2)

For the K-nearest neighbors rule, the predicted class of test sample x∗i is set equal

to the most frequent true class among the K nearest training samples.
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2.2 SUPPORT VECTOR MACHINE (SVM)

The SVM approach was developed by Vapnik (Cortes and Vapnik, 1995;

Suykens and Vandewalle, 1999). Synthetically, SVM is a linear method in a very

high dimensional feature space that is nonlinearly related to the input space. The

method maps input vectors to a higher dimensional space where a maximal sepa-

rating hyperplane is constructed (Joachims, 2005). Two parallel hyperplanes are

constructed on each side of the hyperplane that separates the data and maximizes

the distance between the two parallel hyperplanes. An assumption is made that

the larger the margin or distance between these parallel hyperplanes, the better the

generalization error of the classifier will be.

SVM was initially designed for binary classification. To extend SVM to the

multi-class scenario, a number of classification models were proposed (Wang and

Xue, 2014). Formally, given training vectors xi ∈ ℜJ , i = 1, . . . ,n∗, in two classes,

and the label vector Y ∈ {−1,1}n∗ (where n∗ in the size of the training samples),

the support vector technique requires the solution of the following optimization

problem:

min
w∈H,b∈ℜ,ξi∈ℜ

1

2
wT w+C

n∗

∑
i=1

ξi,

sub ject to yi(wT ϕ(xi)+b)≥ 1−ξi

ξi ≥ 0, i = 1, . . . ,n∗,

(3)

where w ∈ ℜJ is the weights vector, C ∈ ℜ+ is the regularization constant (i.e.,

the "cost" parameter), ξ are the data points to classify, and the mapping function

ϕ projects the training data into a suitable feature space H.

For a K-class problem, many methods use a single objective function for

training all K-binary SVMs simultaneously and maximize the margins from each

class to the remaining ones (Wang and Xue, 2014; Weston and Watkins, 1998).

An example is the formulation proposed by Weston and Watkins (Weston and

Watkins, 1998). Given a labeled training set represented by {(x1,y1), . . . ,(xn∗ ,yn∗)},

where xi ∈ ℜJ and yi ∈ {1, . . . ,K}, this formulation is given as follows:

min
wk∈H,b∈ℜK ,ξ∈ℜn∗×K

1

2

K

∑
k=1

wT
k wk +C

n∗

∑
i=1

∑
t�yi

ξi,t ,

sub ject to wT
yi

ϕ(xi)+byi)≥ wT
t ϕ(xi)+bt +2−ξi,t ,

ξi,t ≥ 0, i = 1, . . . ,n∗, t ∈ {1, . . . ,K}.

(4)
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The resulting decision function is given in Equation 5 (Wang and Xue, 2014).

argmax
k

fm(x) = argmax
k

(wT
k ϕ(xi)+bk). (5)

2.3 DISCRIMINANT ANALYSIS FUNCTIONS

In this section we present a comprehensive overview of different classifiers

derived by Linear Discriminant Analysis (LDA), and that have been highly suc-

cessful in handling high dimensional data classification problems: Diagonal Lin-

ear Discriminant Analysis (DLDA), Maximum uncertainty Linear Discriminant

Analysis (MLDA), and Shrunken Linear Discriminant Analysis (SLDA). All the

three regularization techniques compute Linear Discriminant Functions, by de-

fault after a preliminary variable selection step, based on alternative estimators of

a within-groups covariance matrix that leads to reliable allocation rules in prob-

lems where the number of selected variables is close to, or larger than, the number

of available observations.

The main purpose of discriminant analysis is to assign an unknown subject

to one of K classes on the basis of a multivariate observation x = (x1, . . . ,xJ)
′,

where J is the number of variables. The standard LDA procedure does not as-

sume that the populations of the distinct groups are normally distributed, but it

assumes implicitly that the true covariance matrices of each class are equal be-

cause the same within-class covariance matrix is used for all the classes consid-

ered (Thomaz et al., 2006; Wichern and Johnson, 1992). Formally, let Sb be the

between-class covariance matrix defined as

Sb =
K

∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T , (6)

and let Sw be the within-class covariance matrix defined as

Sw =
K

∑
k=1

(nk −1)Sk =
K

∑
k=1

nk

∑
i=1

(x̄k,i − x̄k)(x̄k,i − x̄k)
T , (7)

where xk,i is the J-dimensional pattern i from the k-th class, nk is the number

of training patterns from the k-th class, and K is the total number of classes (or

groups) considered. The vector x̄k and matrix Sk are respectively the unbiased

sample mean and sample covariance matrix of the k-th class, while the vector x̄ is

the overall unbiased sample mean given by

x̄ =
1

n

K

∑
k=1

nkx̄k =
1

n

K

∑
k=1

nk

∑
i=1

xk,i, (8)
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where n is the total number of samples n = n1 + · · ·+nK .

Then, the main objective of LDA is to find a projection matrix (here defined

as PLDA) that maximizes the ratio of the determinant of the between-class scatter

matrix to the determinant of the within-class scatter matrix (Fisher’s criterion).

Formally,

PLDA = argmax
P

det
(
PT SbP

)
det (PT SwP)

. (9)

It has been shown (Devijver and Kittler, 1982) that Equation (9) is in fact the

solution of the following eigenvector system problem:

SbP−SwPΛ = 0. (10)

Note that by multiplying both sides by S−1
w , Equation (10) can be rewritten as

S−1
w SbP−S−1

w SwPΛ = 0

S−1
w SbP−PΛ = 0

(S−1
w Sb)P = PΛ,

(11)

where P and Λ are respectively the eigenvector and eigenvalue matrices of the

S−1
w Sb matrix. These eigenvectors are primarily used for dimensionality reduction,

as in principal component analysis (PCA) (Rao, 1948).

However, the performance of the standard LDA can be seriously degraded

if there are only a limited number of total training observations n compared to

the number of dimensions of the feature space J. In this context, in fact the Sw

matrix becomes singular. To solve this problem, Yu and Yang (Thomaz et al.,

2006; Yu and Yang, 2001) have developed a direct LDA algorithm (called DLDA)

for high dimensional data with application to face recognition that diagonalizes

simultaneously the two symmetric matrices Sw and Sb. The idea of DLDA is to

discard the null space of Sb by diagonalizing Sb first and then diagonalizing Sw.

The following steps describe the DLDA algorithm for calculating the projec-

tion matrix PDLDA:

1. diagonalize Sb, that is, calculate the eigenvector matrix V such that V T SbV =Λ;

2. let Y be a sub-matrix with the first m columns of V corresponding to the Sb

largest eigenvalues, where m≤ rank(Sb). Calculate the diagonal m×m sub-matrix

of the eigenvalues of Λ as Db = Y T SbY ;

3. let Z =Y D−1/2
b be a whitening transformation of Sb that reduces its dimension-

ality from J to m (where ZT SbZ = I). Diagonalize ZT SwZ, that is, compute U and
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Dw such that UT (ZT SwZ)U = Dw;

4. calculate the projection matrix as PDLDA = D−1/2
w UT ZT .

Note that by replacing the between-class covariance matrix Sb with total covari-

ance matrix ST (ST = Sb+Sw), the first two steps of the algorithm become exactly

the PCA dimensionality reduction technique (Yu and Yang, 2001).

Two other approaches commonly used to avoid both the critical singularity

and instability issues of the within-class covariance matrix Sw are SLDA and the

MLDA (Thomaz et al., 2006). Firstly, it is important to note that the within-

class covariance matrix Sw is essentially the standard pooled covariance matrix Sp

multiplied by the scalar (n−K). Then,

Sw =
K

∑
k=1

(nk −1)Sk = (n−K)Sp. (12)

From this property, the key idea of some regularization proposals of LDA (Camp-

bell, 1980; Guo et al., 2006; Peck and Van Ness, 1982) is to replace the pooled

covariance matrix Sp of the within-class covariance matrix Sw with the following

convex combination:

Ŝp(γ) = (1− γ)Sp + γλ̄ I, (13)

where γ ∈ [0,1] is the shrinkage parameter, which can be selected to maximize

the leave-one-out classification accuracy (Cawley and Talbot, 2003), I is the iden-

tity matrix, and λ̄ = J−1 ∑J
j=1 λ j is the average eigenvalue, which can be written

as J−1trace(Sp). This regularization approach, called SLDA, would have the ef-

fect of decreasing the larger eigenvalues and increasing the smaller ones, thereby

counteracting the biasing inherent in eigenvalue sample-based estimation (Hastie

et al., 1995; Thomaz et al., 2006).

In contrast, in the MLDA method a multiple of the identity matrix determined

by selecting the largest dispersions regarding the Sp average eigenvalue is used. In

particular, if we replace the pooled covariance matrix Sp of the covariance matrix

Sw (shown in Equation (12)) with a covariance estimate of the form Ŝp(δ ) = Sp +

δ I (where δ ≥ 0 is an identity matrix multiplier), then the eigen-decomposition

of a combination of the covariance matrix Sp and the J × J identity matrix I can
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be written as

Ŝp(δ ) = Sp +δ I

=
r

∑
j=1

λ jφ j(φ j)
T +δ

J

∑
j=1

φ j(φ j)
T

=
r

∑
j=1

(λ j +δ )φ j(φ j)
T +

J

∑
j=1

δφ j(φ j)
T ,

(14)

where r is the rank of Sp (note that r ≤ J), λ j is the j-th eigenvalue of Sp,

φ j is the j-th corresponding eigenvector, and δ is the identity matrix multiplier

previously defined. In fact, in Equation (14) the identity matrix is defined as

I = ∑J
j=1 φ j(φ j)

T . Now, given the convex combination shown in Equation (13),

the eigen-decomposition can be written as

Ŝp(γ) = (1− γ)Sp + γλ̄ I

= (1− γ)
r

∑
j=1

λ jφ j(φ j)
T + γ

J

∑
j=1

λ̄ φ j(φ j)
T .

(15)

The steps of the MLDA algorithm are shown follows:

1. Find the Φ eigenvectors matrix and Λ eigenvalues matrix of Sp, where Sp =

(n−K)Sw (from Equation (12));

2. Calculate Sp average eigenvalues as J−1trace(Sp);

3. Construct a new matrix of eigenvalues based on the following largest dispersion

values :

Λ∗ = diag
[
max(λ1, λ̄ ), . . . ,max(λJ, λ̄ )

]
;

4. Define the revised within-class covariance matrix:

S∗w = (n−K)S∗p = (n−K)(ΦΛ∗ΦT ).

Then, the MLDA approach is based on replacing Sw with S∗w in the Fisher’s crite-

rion formula described in Equation (9).

3. PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS (PLS-DA)

Multivariate regression methods like principal component regression (PCR)

and partial least squares regression (PLS-R) enjoy large popularity in a wide range
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of fields and are mostly used in situations where there are many, possibly cor-

related, predictor variables and relatively few samples, a situation that is com-

mon, especially in chemistry, where developments in spectroscopy since the sev-

enties have revolutionized chemical analysis (Pérez-Enciso and Tenenhaus, 2003;

Wehrens and Mevik, 2007). In fact, the origin of PLSR lies in chemistry (Martens,

2001; Wehrens and Mevik, 2007; Wold, 2001).

PCR performs a principal components analysis on the predictors and then

fits a linear regression on the chosen reduced dimension. PLS-R, on the other

hand, performs the dimensionality reduction by repeatedly regress the response

variable on each single predictor: in fact, the response variable participates to the

dimensional reduction (Friedman et al., 2001).

Partial least squares discriminant Analysis (PLS-DA) is a variant of PLS-R

that can be used when the response variable Y is categorical. Under certain cir-

cumstances, PLS-DA provides the same results as the classical approach of Eu-

clidean distance to centroids (EDC) (Davies and Bouldin, 1979) and under other

circumstances, the same as that of linear discriminant analysis (LDA) (Izenman,

2013). However, in different contexts this technique is specially suited to deal with

models with many more predictors than observations and with multicollinearity,

two of the main problems encountered when analyzing hyperspectral detection

data (Pérez-Enciso and Tenenhaus, 2003).

3.1. MODEL AND ALGORITHM

PLS-DA is derived from PLS-R, where the response vector Y assumes dis-

crete values. In the usual multiple linear regression model (MLR) approach we

have

Y = XB+F, (16)

where X is the n×J data matrix, B is the J×1 regression coefficients matrix, F is

the n×1 error vector, and Y is the n×1 response variable vector. In this approach,

the least squares solution is given by B = (XT X)−1XTY .

In many cases, the problem is the singularity of the XT X matrix (e.g., when

there are multicollinearity problems in the data or the number of predictors is

larger than the number of observations). Both PLS-R and PLS-DA solve this

problem by decomposing the data matrix X into P orthogonal scores T (n×P)

and loadings matrix Λ (J×P), and the response vector Y into P orthogonal scores

T (n×P) and loadings matrix Q (1×P). Then, let E and F be the n× J and
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n × 1 error matrices associated with the data matrix X and response vector Y ,

respectively. There are two fundamental equations in the PLS-DA model:

X = T ΛT +E

Y = T QT +F.
(17)

Now, if we define a J×P weights matrix W , we can write the scores matrix as

T = XW (ΛTW )−1, (18)

and by substituting it into the PLS-DA model, we obtain

Y = XW (ΛTW )−1QT +F, (19)

where the regression coefficient vector B is given by

B̂ =W (ΛTW )−1QT . (20)

In this way, an unknown sample value of Y can be predicted by Ŷ = XB̂, i.e.

Ŷ = XW (ΛTW )−1QT . The PLS-DA algorithm estimates the matrices W , T , Λ,

and Q through the following steps (Brereton and Lloyd, 2014).

Algorithm 1 Partial Least Squares

1: Fixed P, initialize the residuals matrices E0 = X and F0 = Y ;

2: for p = 1 to P do
3: Calculate PLS weights vector

Wp = ET
0 F0;

4: Calculate and normalize scores vector

Tp = E0Wp(W T
p ET

0 E0Wp)
−1/2 ;

5: Calculate the X loadings vector

Λp = ET
0 Tp;

6: Calculate Y loading

Qp = FT
0 Tp;

7: Update the X residuals vector

E0 = E0 −TpΛT
p ;

8: Update the Y residuals vector

F0 = F0 −TpQT
p ;

9: end for
10: Obtain output matrices W , T , Λ, Q.



192 Fordellone, M., Bellincontro, A., Mencarelli, F.

Fig. 1: Representation of spectral detections performed on the 1100–2300 nm wavelength
range

0.
5

1.
0

1.
5

2.
0

Wavelength

S
pe

ct
ra

1198 nm 1398 nm 1598 nm 1798 nm 1998 nm 2198 nm



Partial Least Squares Discriminant Analysis: A Dimensionality Reduction … 193

servations (i.e., about 70% of the entire sample, with each class composed of 37

elements), and a test set (drawn from the sample) composed of 51 observations

balanced across the three cultivars (i.e., about 30% of the entire sample and each

class composed by 17 elements) (Guyon et al., 1998).

The first step of the analysis consists in selecting the optimal number of com-

ponents P, i.e., the number of latent scores to consider for representing the original

variable space. For this purpose, the latent subspace must explain the largest pos-

sible proportion of the total variance to guarantee the best model estimation. Table

1 shows the proportion of the total variance explained by the first five components

identified by PLS-DA.

Tab. 1: Cumulative proportion of the total variance explained by the first five components
(percent values)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Exp.Variance 61.152 35.589 0.892 0.982 1.167

Cum. Sum 61.152 96.741 97.633 98.615 99.782

The table shows that the first two components explain about 97% of the to-

tal variance, and only the first two latent scores have a very high contribution.

Thus, it seems that the best latent subspace is represented by the plane composed

of the first two identified components. However, in order to guarantee the best

model estimate, it is also useful to understand its prediction quality with regard

to the different subspace dimensions. In other words, the selection of the optimal

number of components must be related to some criterion that ensures the max-

imum prediction quality of the estimated model. In this paper, we propose the

maximum reduction of the misclassification error rate criterion - applied on the

comparison between the real training partition and the predicted training partition

- in order to choose the number of components of PLS-R. Figure 2 represents the

error rate values for different numbers of components (i.e., from 2 to 10 selected

components).

The scree-plot shown in Figure 2 suggests P = 3 as the optimal number of

components, where the minimum value of the misclassification error rate is equal

to 0.07. Then, we can select three components to estimate the model.

Figure 3 shows the loadings distributions and the squared of the loadings

distributions of the three T s’ latent scores, measured on all the observed variables

(i.e., on the 1100–2300 nm wavelength range).
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Fig. 2: Error rate values with respect to different choices of components number

Fig. 3: The loadings distributions (top) and squared loadings distributions (bottom)  of the
three latent scores measured on all the observed variables
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Fig. 4: Partition obtained by PLS-DA represented on the three estimated latent scores
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Training set Test set
MIS χ2 MIS χ2

PLS-DA 0.002 153.283 0.008 77.182

KNN 0.027 151.744 0.157 65.294

SVM 0.072 152.688 0.137 69.750

DLDA 0.241 101.599 0.255 46.714

MLDA 0.078 149.577 0.010 72.311

SLDA 0.005 150.456 0.011 75.899

From the results, we can see that PLS-DA has the best performance on both

the training set and the test set. This result is confirmed by the representation

of the predicted partition on the first three T s’ latent scores (i.e., on about 97%

of the total data variance) as shown in Figures 5 and 6 (training set and the test

set, respectively). In fact, we can see that, with respect to the other discriminant

function, PLS-DA identifies more homogeneous and better-separated classes.

From the scatter plot 3D we can see that in terms of classification, an appre-

ciable separation among all observations referring to the three cultivars used has

been obtained by a good discrimination among samples of the cultivar Dolce di
Andria (points in black color) and the two other cultivars, while the separation

Predicted partition

P1 · · · PC

Real partition R1 n11 · · · n1C n1·
...

...
. . .

...
...

RR nR1 · · · nRC nR·
n·1 · · · n·C n

Table 3 shows the results for the quality of the model predictions obtained on

the training set and the test set.

Tab. 2: An example of a confusion matrix between the real data partition and the predicted
partition

Tab. 3: Model prediction quality computed on the training set and the test set
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Fig. 6: Representation of the predicted partition on the three latent scores (test set). The
colors black, red, and green represent Dolce di Andria, Moraiolo, and Nocellara

Etnea, respectively

Fig. 5: Representation of the predicted partition on the three latent scores (training set).
The colors black, red, and green represent Dolce di Andria, Moraiolo, and Nocellara

Etnea, respectively
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between samples of the cultivars Moraiolo, and Nocellara Etnea (points in color

red and green, respectively) appears was a bit difficult.

5. CONCLUDING REMARKS

Data acquired via spectroscopic detection represent a hard challenge for re-

searchers, who face two crucial problems: data dimensionality larger than the

number of observations, and high correlation levels among the variables. In this

paper, partial least squares discriminant analysis (PLS-DA) modeling was pro-

posed as a method to classify hyperspectral data. The results obtained on real

data show that PLS-DA identifies classes that are more homogeneous and better-

separated than other commonly used methods, such as other discriminant func-

tions and some other non-parametric classifiers.

Moreover, we think that PLS-DA is a very important tool in terms of dimension-

ality reduction, as it can maximize the total variance of data using just a few

components (i.e., the T s’ latent scores). In fact, the PLS-DA components enable

a good graphical representation of the partition, which is not possible with other

approaches.
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