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FULL-PROFILE CONJOINT ANALYSIS:
SOME MEASURING, MODELING AND LEVELS
OF AGGREGATION

Amedeo De Lucal

Department of Satistics, University of Milan - Cattolica, Milan, Italy

Abstract. In this work the various conjoint analysis (COA) models developed by the
author are reviewed. Such models consider different levels of data response measure-
ment scales; different levels of response aggregation, either individual or aggregated
and different parameter estimation methods. We therefore report: i) some approaches
to full-profile COA by multiple linear regression analysis: weighted least squares ap-
proach; the arcosin transformation approach; an additive binary coding of ordinal ex-
perimental factors; COA to estimate more than one response function; ii) some ap-
proaches to full-profile COA by multiple logistic regression analysis (ordinal logistic
regression for the estimate of the response functions; multivariate logistic regression;
multivariate logistic regression response with main and interaction effects).

Keywords: Conjoint analysis, Multivariate linear regression analysis, Multivariate lo-
gistic regression analysis.

1. INTRODUCTION

Conjoint Analysis (Coa) is a popular marketing research technique. It is used in
designing new products, changing or repositioning existing products,
redesigning processes. It is used to study the factors that influence consumers’
product preferences and simulate consumer choice.

Coa deals with preference data (ratings or rankings) expressed by
individuals (consumers, potential buyers, service users, judges, etc.) - in a
consumer research - on a set of stimuli (products) described by attributes
assuming different values or categories (attribute-levels). Each stimulus is a
combination of attribute levels.

Aim of the Coa is to evaluate the relative importance of levels/attributes
using only the global preference (overall) - known - on the product: the
preference model can be multiplicative, additive and decompositive.
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The estimation method attempts to find a set of individual part-worth
utilities (by a multiple regression model) that relate the attribute levels of an
object to overall evaluation.

Partial utility coefficients can be used for computing the total utility of the
stimulus, as well as for estimating the utility of stimuli absent in the
experiment.

The stimulus with the highest total utility is the optimum marketing-mix.

A) Some approaches to full-profile conjoint analysis by multiple linear regression
analysis

2. CONJOINT ANALYSIS WITH A DICHOTOMOUS DEPENDENT
VARIABLE: WEIGHTED LEAST SQUARES APPROACH

If Y is the dichotomous dependent variable (overall response on a product
profile) assuming two judgment categories: Y; = 1 «satisfactory», Y, = 0
«unsatisfactory», and X1, ...X},..., Xjs are the experimental factors, with levels /
=1,2,.,0l, andm=1,2, ..., M attributes - expressed with disjunctive binary
coding z - the following regression equation, without intercept, is to be
considered, which establishes a linear relation between variable Y and
independent variables X,

Y=Z8+E )

where:

Y = [Y1, ..., Yx]' is the preference column vector of the generic judge, relevant
to the K stimuli Y, k=1, 2, .., K ¥ takes values O or 1 (Y € {0,1});

Z = the experimental design matrix of dimensions Kx XM _. 1. with elements
zy, dummy variable relevant to [-th level of the generic “m” attribute (m = 1,
2, ..., M),

8§ = [61(1), s 61(111), 61(1\1‘44)]’ column vector containing the unknown parameters
(utility coefficients) associated with the dummy variables of / level of each m
attribute (where 61(1) is the constant term associated to the reference
category);

E =[Ey, .., Ex]’ is the column vector with generic observation E; indicates the
observation error relevant to the k-th stimulus; E; is heteroskedastic.

Being the dichotomous (0, 1) dependent variable (and considering the
heteroskedasticity of the disturbance term), we used the weighted least squares
method to estimate the model parameters (linear probability model) at the
aggregated level. Independent variables are also dichotomous.

Indicating with:
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yie =2k y; (for V=1, )

the fraction of positive responses on the k-th stimulus (k= 1, 2, ..., K) provided

by n judges is: f, = 2k

n
We can write the regression equation in the following way:

l ~
fo=SM_ 3im 607 0 + € 3)

Zmik indicates a row vector in which the first column has been suppressed, for
each of blocks of dummy variables (baseline), and it has been included in the
column of the constant term.

Considering the heteroskedasticity of the disturbance term we applying to

(3) the following system of weights wy, obtained by the same relative
1/2

frequencies fi: Wy = [ ; n = number of observations (i.e. 100 in

Ny ]
(F)A=fi)
the example).

By the system of weights w; we have the following relationship:

! .
W fx =2 2", 5l(m) Wi Zg + Wi - & @

By applying the ordinary least squares method (OLS) to the observations
thus transformed, we come to the estimate model parameters.

For np(1-p) > 10 (p = proportion of the overall response 1 on the
combination k), the binomial distribution of p variable approximates the normal
variable. If the relation np(1 - p) > 10 is verified for all f; values, we can be use
— as regard the estimators obtained by the weighted least squares method — the
standard tests of significance of the linear regression.

2.1 APPLICATION

The model was applied to the results of a survey conducted on a sample of
college students, who were administered a questionnaire structured according to
a sequence of hypothetical profiles of a university course.

The overall evaluation Y toward the service provided by a university was
expressed by » = 100 students on a dichotomous scale: 1 = satisfactory, 0 =
unsatisfactory, about 27 combinations of levels / judgments (/ =1, 2, 3): 1 =
unsatisfactory, 2 = satisfactory, 3 = more than satisfactory, expressed by
disjunctive binary coding, with reference to attribute: Teaching, Structures,
Services. It is a full factorial design with uniform replications.

The estimated aggregate model:
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f=p =0,0009+ 0,603 5, + 0,701 Z,35 + 0,138%,, + 0,195%,5 +

+0,11625, + 0,188%55.

The linear probability function formulation allows to fall outside the
interval between 0 and 1 [0, 1], which is inconsistent with definition of p and
with the interpretation of the expectation as a probability.

With reference to this last constraint, if not spontaneously satisfied by
sample estimates, in order to comply it (instead of adopting the arcsine
transformation on the aggregated observations; v. § 3, De Luca, 2004; pp. 349-
358), we can truncate the p distribution in the following way: with pj,
indicating the lowest value that p can take and p,,, its highest value, we assume:
DPinf=0€pap=1.

In the application we have only three values out of 27 for which py
exceeds 1; we have, therefore, the following probability vector:

p’ =[0,00090,12 0,19 0,14 0,25 0,33 0,20 0,31 0,38 0,60 0,72 0,79 0,74
0,86 0,93 0,80 0,91 0,99 0,70 0,82, 0,89 0,84 0,96 1,00 0,90 1,00 1,00].

3. CONJOINT ANALYSIS WITH DICHOTOMOUS AND LIMITED
DEPENDENT VARIABLE: THE ARCOSIN TRANSFORMATION
APPROACH

Being the dependent variable dichotomous (0, 1), and considering the
heteroskedasticity of the disturbance term, the generalized least-squares
regression is appropriate to estimate the Coa model.

But a distinct difficulty remains: the linear probability function formulation
allows to fall off the interval between 0 and 1 [0, 1]. To solve this problem we
used the arcsine transformation method, to estimate the model parameters, at
the aggregated level.

Considering the example discussed discussed in Section 2.1, we
preliminarily submit the values p; to the arcsine transformation in order to
stabilize their variance.

Indicating with p; the proportion of respondents that on the combination £,
k=1,2,...27, gave overall response 1 (satisfactory), we have:

M(pi) = Pr; Var (py) = Pi (1 = Py)/n

(n=100; P, = proportion of successes (1) related to the population).
Indicating with ¢ the angle in radians, obtained by the following

transformation: ¢ = 2arcsin,/p; (with: 0 <p, <1; 0 <¢ <m), we have the
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following inverse function: pj = sin? %; therefore, for n, sufficiently large, is:

@ = M(p) = o(P,), with ¢(Py) = 2arsin,/Py.
The model expression is the following:

o) =78+¢ (3)

where:

o(f) = Zarcsin\/_f; indicates the column wvector (27x1 in the coming
application in Section 3.1) of the transformed proportions of positive
responses (successes);

Z is a matrix (27x7 in the application) in which the first column has been
suppressed (baseline), for each of the three blocks of dummy variables, and
it has been included in the column of the constant term;

8 is a vector (27 x 1 in the application ) of unknown coefficients;

€ is a vector (27% 1 in the application) of errors.

To estimate model (5) we used the ordinary least squares method (OLS).
The estimated probability values stay within the interval [0, 1].

3.1 APPLICATION

The overall evaluation, Y, toward the service provided by a university is
expressed by 100 students on a dichotomous scale (1 = satisfactory, 0 =
unsatisfactory), about 27 combinations of levels of judgment i =1, 2, 3, (1 =
unsatisfactory, 2 = satisfactory, 3 = more than satisfactory), with reference to
attribute: Teaching, Structures, Services (see Section 2.1).

Considering the column vector 27x1 of the transformed proportions of
positive response (success) and applying formula (5) we obtain the parameters
estimate of the following model:

f=p=0326+12557Z), + 1,587 Z}5 + 0,436 Z,, + 0,611 Zp3+ +0,438

Zy, 10,612 Z35.

In the application all coefficients are statistically significant at the a =
0.001 level.

We remark that the coefficients of model (5) are expressed in angular
values: ¢ = Zarcsinm. Consequently, to translate such coefficients in terms of
experimental effects we need to transform the same in terms of proportions by
the relation: f; = sin?(%).

The linear function probability values all fall in the interval [0, 1].
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4. CONJOINT ANALYSIS WITH'DICHOTOMOUS RESPONSE
VARIABLE BY AN ADDITIVE BINARY CODING OF ORDINAL
EXPERIMENTAL FACTORS: A PROPOSAL

Let ¥ denote the overall evaluation Y about a profile of the product expressed
on a dichotomous scale (1 = satisfactory, 0 = unsatisfactory), on combinations
of ordered levels (e.g.: 1 = unsatisfactory, 2 = satisfactory, 3 = more than
satisfactory) (De Luca, 1999, p. 221) of the experimental factors.

A descriptive model of the result averages levels 5, which retains the
ordered character of the experimental factors, in an experiment with, for
instance, 2 factors with 3 levels (in absence of interactions) is:

M= u+a +a®, hk=1,23; (6)
where:
4 is the parameter describing the average value;
the parameters a,(ll), a}({z) denote the level factor effects computed as deviations
from the “average value”.

With reference to model (6), the 9x7 matrix (of the full factorial design
3x3), that describes the experimental conditions, does not have complete
characteristic, thus the parameters of (6) are not directly estimable (according
to the principle of least squares).

A parameterization of the model with intercept descending from the
following representation of the problem, is, in matrix symbolism:

711 71 1100007
712 10010 - M1
M3 10011 a(l)
2
N21 11000 (1)
722 | H11010] .|%3 (7)

12 | |11011] [P
M31 11100 2)
.a3 -

N32 11110
"33 7 '11111-
In (7) the reference level is 1y, the parameter agl) expresses the effect of

the first factor, when this passes from the first to the second level, agl)

indicates the additional effect that is added to the previous, when passing to the

third level. A similar meaning, with reference to the second factor, have the

parameters agz) and agz)_
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The choice probability vector of the overall judgment is estimated by a
model of multiple linear regression of dummy variables.

Since the logistic cumulative distribution function F(x) presents a linear
behavior around the origin, i.e. for x € {-1.39, 1.39}, interval corresponding
approximately to values: 0.2 < F(x) < 0.8, we propose a linear approximation of
the probabilities p,, j = 1, 2, ..., J judges, with reference to the explanatory
variables expressed on an ordinal scale.

Considering the heteroskedasticity of the disturbance term, we can avail of
Generalized Least Squares (GLS) to estimate the parameters of the model.

Through empirical evidence it appears that by applying the procedure for
estimating the parameters of a two-stage Goldberger method (1964, pp. 231-
234), even if the qualitative experimental factors are represented with dummy
variables (0,1): the GLS estimators coincide with the Ordinary Least Squares
(OLS) estimators (De Luca, 2002).

Accordingly, the estimators of this linear model are correct and efficient.

But a distinct difficulty remains: the linear probability function formulation
allows to fall outside the interval between 0 and 1.

If the [0,1] constraint is not spontaneously satisfied by sample estimates,
we may truncate the p distribution in the following way: with p;r indicating the
lowest value that p can take and p,, its highest value, we assume p;,r = 0 € pg,
=1.

4.1 APPLICATION

In the following application, concerning the degree of interest in different
profiles of mobile phone, the experimental factors are observed on an ordinal
scale.

In this study we are interested in how subjects evaluate various kinds of
smartphones; n = 79 people took part in the COA study. The full factorial
design of product profile is composed of 18 stimuli (i.e., 3x2x3 = 18).

They were asked to rate their preferences on a 1 to 10 equal interval scale
for each (1= total disinterest in the profile; 10 = maximum interest) of the 18
hypothetical smartphone profiles.

The experimental factors, with the respective levels, are the following:

1) Weight: < 94 grams, 95-105 grams, > 105 grams;
2) Battery run-time: < 200 hours, > 200 hours;
3) price: = 200€, 201-300€, > 300€.

The parameter estimates of the partial utility functions are obtained by
multiple linear regression with ordinal predictors, expressed using an additive
binary coding, unlike classical Coa (Green et al., 1971), which is based on
disjunctive binary coding of the experimental factors at issue.



48 De Luca A.

The model:
Y; =8389-2,6677,, —~1,000Z,5, + 1111%,,, —1833%;,, - 2,167Z,;,

ji=12,...,n

5. A MULTICATEGORY RESPONS APPROACH TO CONJOINT
ANALYSISTOESTIMATEMORETHANONERESPONSE FUNCTION

The model provides as many overall desirability functions (aggregated part-
worths sets), as the overall ordered categories, unlike the traditional metric and
nonmetric Coa, which gives only one response function.

In the proposed model the multicategorical response variable (ordinal-
polytomous), expressing overall desirability, is considered according to k¥ (k=
1,2, ..., K) binary categories of response (i.e. for K = 3; 1 = not desirable, 2 =
desirable, 3 = most desirable).

In this situation we have the levels of judgment on a three dimensional
categorical scale, with dichotomous components Y, € {0, 1}, k=1, 2, 3, and
to levels i of judgment Z; € {0, 1}, which describe the choice of levels of
explanatory factors.

To assess the value of effects on a response variable (overall) of the
experimental factors, the dependent categorical variable is described as a
function of dummy variables.

A dummy variable generalized multivariate linear regression model with
parameter constraints can be used.

If we denote with py the probability that the respondent j-th (=1, 2, .., J)
chooses the y; category of attribute Y, associated with stimulus s (s =1, 2, ...,
S), being the three response categories mutually exclusive, the model parame-
ters are subject to the following constraints: Y3, prs = 1; 0 < pys < 1.

1) First stage of calculation procedure: parameter estimation of univariate
linear regressions
Being K answers mutually exclusive and exhaustive thus much, the K-th
equation is deduced by the remaining ¢ = K-1 equations.

For the k-th category of the overall variable Y the univariate regression
equation without intercept between variable Y; and M factors, in matrix notation
and in compact form is thus indicated:

Y.=28,+E;,, k=1,2,...,.K (8)
where:
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Y. = is the S/x1 column vector, with generic observation Yy, k= 1, 2, ..., K
(with K = 2 in the considered case), s = 1,2, ..., S; j=1, 2, .., J, associated
with stimulus s, respondent j and category k of ¥

Z = fixed matrix of experimental design of dimensions SJxXM_, L.,
(composed of J sub-matrices Z, of indicator variables associated to .S com-
(m)

binations of the plan, with elements z;; , each one being a dummy variable
representing to “/” level of “m” experimental factor in the “s” stimulus);

8,= column vector of order XX _. I, x1, with [, indicating the number of
levels of m-th factor (9x1 dimension in the considered case) containing the
unknown parameters, k = 1, 2,..., ¢; m=1,2,..., M; [ =1, 2, ..., L,
associated with the indicator variables of / levels of m attribute;

Ex = [Ex11, Ex21s -+ » Exs1, Ex22s - » Exsz,.. Ex1js o » Exsy]'s SJ%1 column vector
(Exy indicates the observation error relevant to the s stimulus and the j-th
statistical unit; Eyy are heteroskedastic and independent) (Johnston, 2000;
pp. 244 - 248).

The algebraic form of intercept model, in which the first column has been
suppressed (baseline) for each of the blocks of dummy variables of the factors,
and included in the column of the constant term, is:

Vis = G +ZM_ T §MEM™ B L k=15 =1,2,..,5 (9
were:

¢, = proportion of cases with value 1 for Y, variable pertaining to the reference
category (baseline).

2) Second stage of the calculation procedure: parameter estimation of
univariate linear regressions in compact form
The Z matrix of the experimental design is of order Sx(1 + XM _. 1, — M).

The g equations Y; equation (9) in compact form are expressed as follows:

Y* =78 + E* (10)
were:

Y* = compound vector vec(Y,, Y,) is the vector obtained by arranging in
columns the elements v, and y, of the vectors Y, and Y, respectively, for
each of J = 100 respondents on S stimuli;

Z* is a square compound diagonal matrix, containing gxg submatrices with
JSx(1+ XM _ 1, — M) dimensions, of which the ¢ submatrices Z
positioned on the main diagonal (equal among themselves) present in
column the independent indicator variables corresponding to the different
equations, while the remaining submatrices are composed of null elements;
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-~

8" is a compound vector of the ¢ column vectors of the regression coefficients
each of order (1+XM _, I, — M)x1;
E* is compound vector (Vec) of ¢ column vectors of E; errors.
With reference to (10), interpreted in probabilistic terms (“average
proportion of [’s”), the condition of inequality which is to be subject to a
probability value is: 0 < pps < 1 such condition is translated in the constraint:

0<28, <1  k=1,2,q; s=1,2,..., 5. (11)

Constraint (11) imposes, for the parameter estimation of model (9), the use
of constrained least squares method and quadratic programming on each
univariate equation.

In compact form the multiple regression multivariate model, considering
only the first two categories of Y is represented in the following way:

. Y1] [Z 0]
Y _ = ~ [ ]
Y, 0 Z

fl] + [El] = H8*+ E*
L E;

where:

Y* =vec(Yy, Y2)

H=1Q®Z, where I is a 2x2 identity matrix and @ indicates a Kronecker
product;

g*: VCC(gl, gz)

E*= VCC(El, Ez)

3) Third stage of the calculation procedure: the constrained generalized multi-
variate regression model

In order to estimate the parameters of the multivariate model (10) we consider
the covariance between Y3, k=1, 2,..., q.

Considering that for each respondent j (j = 1, 2, ..., J) the ¥}; valuation is
described by a multinomial observation with ¢ components and that there is a
stochastic independence on varying of j, to estimate the multivariate model
parameters we need to consider a gnxgn dimension variance-covariance matrix
@ (the variance-covariance matrix of Y* vector among the Y}) with elements
(Kotz and Johnson, 1985): Var(Yiy) = prsj(1-prsj), were: pysj is the probability
for a j respondent to choose the k category for the s combination; Cov(Yj, Ygy)
= - Pry DPqy (De Luca et al., 20006).

The estimates of the elements of matrix ® are calculated on the basis of
estimations pPys; obtained by performing the Generalized Least Squares-GLS
(Goldberger, 1964) method separately on each equation of the model as
estimates in the second stage.



Full-profile Conjoint Analysis: Some Measuring, Modeling and ... 51

To estimate the multivariate linear regression model (10) performed by
GLS method we minimize the following mathematical expression (where & !
is inverse matrix of the @) under the condition

F=(Y*"—Z'8)® YY" — Z°8")= minimum (12)

Formula (12), joined to the constraint (11) and to the condition
PR 'z']' 8= 1, entails the use of quadratic programming.

5.1APPLICATION

The model was applied to the overall desirability evaluations expressed on the
K = 3 categories: “undesirable”, “desirable”, “most desirable”, by a sample of J
= 100 insurance officers (homogeneous respondents) on .S = 24 profiles of an
insurance policy. The M = 4 attributes were: X7 = “policy duration” (with
levels: 5, 8 years); X; = “minimum denomination” (2,500 €, 5,000 €); X; =
“stock exchange index” (Ftse/Mib, Dow Jones, Nikkei); X; = “service at
expiry” (paid-up capital, income for life).

To estimate the parameters (see Table 1) of response functions (formula
12) we used the Constrained Non Linear Regression program.

The full factorial design of product profile, with casualization of four
factors and levels of the index-linked life policy, is composed of 24 stimuli (i.e.,
2x2x3x2 = 24), with uniform replications design.

Tab. 1: Estimates of three sets of the aggregated part-worths utilities of the Coa model

Overall Estimated coefficient Overall Estimated coefficient Overall Estimated coefficient
category of the 1st equation category of the 2nd equation category of the 3rd equation
Baseline 51 0,430 52 0,366 (3} 0,204
q 3
8 years 51(;) 0,024 52(12) -0,009 53(;) -0,015
S000€  5(2) -0,006 53 0,004 5@ 0,003
“undesira- 12 “desirable” 22 “most 32
ble” Dow J. 51(23) -0,332 57(;) 0,279 desirable” 53(;) 0,053
Nikkei »y "
53 -0,340 503) 0,256 53) 0,083
Income ! 3 23 33
51(50 0,196 52(;1) -0,096 53(3) 0,010
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Tab. 2: Comparison between observed frequencies (f, ) and probability values ( FA’@)
estimated through the multivariate linear model, for the overall categories

Frequency and Overall Overall Overall
probability category: category: category:*
Stimulus “undesirable” “desirable” “most desirable”
() () ¥s)

s | (7 ok | = s | ©~ Pks
1 0,43 0,43 0,45 0,37 0,10 0,20
16 0,10 0,09 0,61 0,65 0,29 0,26
9 0,08 0,11 0,60 0,62 0,32 0,28
18 0,10 0,12 0,60 0,64 0,30 0,24
12 0,05 0,08 0,67 0,63 0,28 0,29
19 0,52 0,45 0,34 0,36 0,14 0,19
10 0,08 0,12 0,54 0,64 0,38 0,24
24 0,12 0,11 0,48 0,61 0,40 0,27
2 0,10 0,10 0,50 0,65 0,40 0,26
13 0,50 0,42 0,43 0,37 0,07 0,21
5 0,51 0,45 0,41 0,36 0,08 0,19
17 0,10 0,09 0,55 0,62 0,35 0,29
[ 0,35 0,31 0,54 0,54 0,11 0,15
21 0,31 0,31 0,54 0,52 0,15 0,17
15 0,31 0,29 0,60 0,55 0,09 0,16
7 0,59 0,63 0,26 0,27 0,15 0,10
23 0,32 0,28 0,57 0,53 0,11 0,19
8 0,27 0,29 0,62 0,55 0,11 0,16
14 0,29 0,29 0,53 0,53 0,18 0,19
11 0,33 0,32 0,59 0,54 0,08 0,14
20 0,63 0,65 0,33 0,26 0,04 0,09
4 0,34 0,30 0,52 0,52 0,14 0,18
3 0,65 0,64 0,22 0,26 0,13 0,09
22 0,63 0,62 0,24 0,27 0,13 0,11

In order to empirically asses the predictive capacity of the estimated model,
Table 2 shows the probabilities estimated for all the modality combination
(experimental condition “s”) of the factors and the corresponding values of the
observed proportions.

We observe a satisfactory model fitting, as the predicted probabilities turn
out to be very near the corresponding proportions for all the modality
combinations of the experimental design.

The analysis model here proposed provides two main advantages:

1) the use of probability as an average response, which does not require scale
adjustments to render the preference scale as “metric”;
2) a cross-check of the level effects on the & categories.

6. SUMMARY TABLE OF THE APPROACHES TO FULL-PROFILE
CONJOINT ANALYSIS BY MULTIPLE LINEAR REGRESSION
ANALYSISPRESENTED HERE

Table 3 shows the summary of all models characteristics of conjoint modeling
by multiple /inear regression analysis so far submitted.
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Tab. 3: Characteristics of conjoint modeling by multiple linear regression analysis

Alternative 1. COA with 2. COA with 3. COA with 4. COA to estimate
proaches: dichotomous dichotomous dichotomous and more than on
dependent dependent limited dependent | response function
Characteristic variable: variable variables
1.Scaling of the Category Category Category Multicategory
response data assignment assignment assignment assignment

2. Level of Aggregated level | Aggregated level | Individual level Individual level
response

aggregation

3.Estimation Weighted least Arcsine transfor- Constrained Constrained
method squares mation generalized least generalized

multivariate linear
multiple regression

squares

B) Some approaches to full-profile conjoint analysis by multiple logistic
regression analysis

7. ORDINAL LOGISTIC REGRESSION FOR THE ESTIMATION OF
THE RESPONSE FUNCTIONS THROUGH CONJOINT ANALYSIS

In this Coa model we assume that the respondent evalua-tive judgement Y; on
the overall desirability consists in a choice (rather than rating or to ranking
product profiles) of one of the ordered £ (k = 1, 2,..., K) desirability categories
on ordinal scale 1 - 5 (1 = “least desirable”, 5 = “most desirable”) for each §
hypothetical product profiles.

The ordinal response variable is estimated by an ordered logit model, that
directly incorporates the order of Y categories.

To link the categories of overall evaluation Y} to the factor levels, we adopt
a cumulative logit model at the aggregated level (pooled model).

The novelty value in this approach is that one set of aggregated part-worths
(response function) is estimated in connection with each category Yy, as many &
as the K overall ordered categories are, unlike the traditional metric and
nonmetric COA and Choice Based Conjoint (CBC) analysis, which give only
one response function (only one set of aggregated part-worths).

To obtain univocal estimates of the parameters the first variable of each set
of the dummy exploratory variables is dropped (Z;).

The effects of the factors express the variations of the probabilities Py
associated with the vector Z; (the vector of the dummy explanatory variables
relative to the profile s, s =1, 2, ..., S):
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exp (85 +8'%5)

P(e = 1120) = T op sero'2,)

=F(Zs) (k=1,...,K) (13)

where:

Z. is the vector of the reduced matrix Z (see Section 5).

6, is the constant term associated to the reference category. The cutpoint
parameters are not decreasing in k&, since the cumulative logit is an
increasing function of Fj,(Z,), which is itself increasing in & for fixed Z;

&' is the vector of the unknown coefficients and does not have a k subscript; it
is known also as parallel regression, because there is an identical effect of
each indicator variables for all K-1 dichotomous responses (Proportional
0Odd Assumption); so, the model assumes the same effects as Z for all X-1 on
all cumulative logit results, in a parsimonious model for ordinal data (when
this model fits well it requires a single parameter, rather than K-1
parameters, to describe the effect of Z).

To estimate such probabilities we use an aggregate level model across the

J homogeneous respondents, whose evaluations, on each product profile, are

considered J repeated observations.

Therefore the k-th cumulative response probability is:

Pus(Y < k|Z;5) = Fi(Z5) = m1(Zs) + ma(Zs) ++- + me(Zs); k= 1.2, .., K (14)

where m,(Z,) is the probability of response k associated with vector Zg =
[1,212, Z13y oy ZMIM]'

The cumulative probabilities reflect the ordering, with:
P (Y < 1)|Z5) S P (Y < 2|Z5) - Prs(Y < K|Z,), and: P (Y < K|Z5) = 1.

In the model the Kth equation can be obtained from the remaining g = K-1.
The cumulative logits of the (K-1) cumulative probabilities are:

Li (%) = logit[F, (Z,)] = ln[ Fr(Zs) ] _ L, [ 74 (Zs)+ 72 (Zg)+-mx (Zs)

1-Fp(Zs g1 (Es)+Tpr 2 (ED+ g (Zs)

S, +8'% (15)

withk=1,2,..., K-1.



Full-profile Conjoint Analysis: Some Measuring, Modeling and ... 55

71THE APPLICATION: DESIRABILITY OF MOBILE PHONES

The model was applied to the overall desirability evaluations expressed on the
K =5 categories (expressed by disjunctive binary coding) by a sample of J =79
users on S = 18 new profiles of mobile phones, related to a full-factorial
experimental design.

The M = 3 experimental factors (attributes) and levels were:

X = “weight”; levels: <94grams, 95-105 grams, > 105 grams;
X5 = “autonomy”; levels: < 200 h, > 200 h;
X; = “price”; levels: 200 €, 200-300 €, > 300 €.

The model is estimated by PLUM-Ordinal regression procedure, available
in SPSS. The parameters (Table 4) were estimated using the maximum
likelihood method linked to the Proportional Odd Assumption hypothesis (the
Fisher’s Scoring optimisation algorithm) (Table 4). The judgement evaluations
are pooled across respondents (pooled model) (De Luca, 2011).

Intercepts values result increasing since the model is cumulative. In the
application all coefficients are statistically significant at the o = 0.001 level.

In order to empirically asses the predictive capacity of the estimated model,
Table 5 shows the probabilities estimated for all the level combinations
(experimental conditions “s”) of the factors and the corresponding values of the
observed proportions.

We observe a satisfactory model fitting, as the predicted probabilities turn
out to be very near the corresponding proportions for all the modality
combinations of the experimental design.

Tab. 4: Estimates of four set of the aggregated part-worths utilities of the Coa model ordinal
logistic regression
Equations  Estimated  Standard daf Wald c2 p-value
coefficient error

Intercept Y=1 —4.409 0.171 1 662.647 0,000
Y=2 -2.600 0.144 1 327.567 0,000
Y=3 -0.610 0.126 1 23.470 0,000
Y=4 1.512 0.140 1 116.584 0,000

Factor Levels
Weight Z12 -0.944 0,122 1 59.439 0,000
Z13 -1.930 0,129 1 223,215 0,000
Autonony Z 1.041 0,101 1 105,829  0.000
Price Z3) -1.197 0,124 1 93,015 0,000
Z32 -2.355 0,134 1 310,179 0,000
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The here proposed model provides also the following remarkable
advantages:
1) the use of probability Py as an average response, which does not require
scale adjustments to render the preference scale as “metric”;
2) the estimate of one set of aggregated part-worths in connection with each
category k;
3) a cross-check of the attribute level effects on the different k categories of Y.

Tab.5: Comparison of the probabilities estimated through Conjoint analysis model, and the
corresponding proportionsfor all themodality combinationsof theexperimental design

Y )8 Y, Yy Ys
Proba- Propor-| Proba- Propor-| Proba-  Propor- | Proba-  Propor- | Proba- Propor-
K] bility tion bility tion bility tion bility tion bility tion
J.~[71(ZS) py |Ta(zg) Py |[W3(zg) P 4(zg) Py 75(zg) Ps
1 0,01 0,01 0,06 0,04 0,28 0,30 047 0,46 0,18 0,19
2 0,04 0,04 0,16 0,20 0,45 0,41 0,29 0,30 0,06 0,05
3 0,11 0,13 0,33 0,29 0,41 0,46 0,13 0,11 0,02 0,01
4 0,00 0,00 0,02 0,01 0,14 0,14 0,45 0,44 0,38 041
5 0,01 0,03 0,07 0,06 0,31 0,25 0,45 0,49 0,16 0,16
6 0,04 0,06 0,17 0,15 0,45 0,49 0,28 0,24 0,06 0,05
7 0,03 0,01 0,13 0,16 0,42 0,39 0,34 0,35 0,08 0,08
8 0,09 0,08 0,29 0,28 0,43 0,49 0,15 0,14 0,03 0,01
9 0,25 0,24 0,42 0,39 0,27 0,30 0,06 0,06 0,01 0,00
10 0,01 0,00 0,05 0,06 0,27 0,24 0,47 0,51 0,20 0,19
11 0,04 0,04 0,15 0,14 0,44 047 0,31 0,33 0,07 0,03
12 0,10 0,13 0,31 0,33 0,42 0,35 0,14 0,19 0,02 0,00
13 0,03 0,03 0,12 0,14 0,42 0,44 0,35 0,29 0,08 0,10
14 0,09 0,04 0,29 0,33 0,44 0,46 0,16 0,14 0,03 0,04
15 0,24 022 0,42 0,44 0,28 0,24 0,06 0,09 0,01 0,01
16 0,08 0,08 0,26 0,29 0,45 0,44 0,18 0,13 0,03 0,06
17 0,22 0,23 0,41 041 0,30 0,28 0,07 0,06 0,01 0,03
18 047 0,49 0,37 0,29 0,13 0,18 0,02 0,03 0,00 0,01

8. MULTIVARIATE LOGISTIC REGRESSION FOR THE ESTIMATION
OF RESPON-SE FUNCTIONSIN CONJOINT ANALYSIS

In this Coa model the polytomous response variable is described by a sequence
of binary variables. The model provides as many overall desirability functions
(aggregated part-worths sets), as the overall ordered categories are.

We assume that the respondent’s evaluative judgement on the overall
desirability is expressed on each profile of the new product, consisting in a
choice of one of the K desirability categories.
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To link the overall desirability (ordinal dependent variable Y, with levels:
Yoo k=1, 2, ..., K) with the levels of the M experimental factors, the
summarizing vector of the choice probability of one of the mentioned K ordered
categories is interpreted via a multivariate multiple logistic regression model.

We denote by yixy the desirability category k of the concept s for the
respondent j.

The factor effects express the variations of the probabilities py associated
with vector z, corresponding to the combination s (s = 1, 2, ..., S) of M factor
levels, as follows:

pY, =1|z,)=m,(z,) = exp(Opq + 51;1 z,) /[1+exp((5ko+é,'cl z,)](16)

where:

8= (8, 87) is the unknown vector of regression coefficients of the predictor
variables;

z, is the vector of the dummy factors relevant to the combination, or concept s.

To estimate such probabilities . (zs), we use an aggregated level model
across the J homogeneous research respondents (we consider the J respondents
as if they were repeated observations).

To estimate the relation between the Y, (k= 1, 2, ..., K) dependent variable
and m =1, 2, ..., M, predictive factors, with levels /=1, 2, ..., ,, the K overall
categories (Y;,) are codified as K dummy variables; also the independent
variables are codified as dummy variables (Z).

In this multivariate model the Kth equation can be deduced from the
remaining g = K-1 equations.

To solve the linear dependency among all the independent variables the
model is reparametrized using Zl(m) as a reference category, and the model with
intercept is:

~ ~ M Iy ~ -
g(Z)= 40 + 3 3 04" 2"+ ey (17)
m=1 1=2
where:
gr(Zs) is the logit of the sth profile with regard to the kth dependent variable;
8o is a constant term;

S,gn) is the unknown regression coefficient for the /th level of the m factor;

z"l(;;l) is the dummy variable for the /th level of the m factor in the combination
LR
exs; is the error term pertinent to the stimulus s and subjectj (j =1, 2, ..., J).

Indicating with Z the design matrix in equation (17), the g equations
9x(Zs) can be compactly expressed as follows:

g =7"9", (18)
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where:

g" is a compound vector (vec) of ¢ column vectors gy (Z);

Z* is a square compound diagonal matrix, containing gxq submatrices Z;
&* is a compound vector of the ¢ column vectors 8.

To estimate the multivariate model parameters of equation (18) we need to
consider the variance-covariance matrix @, between the Y,, with elements
Var(Yiy) = prg (1 - pry), where: pgy; is the probability for a jth respondent to
choose category k& for the combination s; Cov(Yis, Yig) = - Prg Pysi-

The estimates of the ® matrix elements are calculated on the basis of
estimations  Pysj, obtained by performing a logistic regression analysis
separately on each dependent variable, using the maximum likelihood method
to each equation (17).

To estimate the multivariate logistic regression model (18) we minimize
the following mathematical expression (where ®~1 is inverse matrix of the ®):

F=(g -7 &1 (g*- 73" (19)
8.1 THE APPLICATION: DESIRABILTY OF INSURANCE POLICIES

The model was applied to the overall desirability evaluations expressed in the K
= 3 categories: “undesirable”, “desirable”, “most desirable”, by a sample of J =
100 insurance officers (homogeneous respondents) on S = 24 profiles of the
insurance policy.

The M = 4 attributes were: Xl = “policy duration” (with levels: 5, 8 years);
X2 = “minimum denomination” (2,500 €, 5,000 €); X3 = “stock exchange index”
(Ftse/Mib, Dow Jones, Nikkei), X, = “service to expiry” (paid-up capital,
income for life). To estimate the parameters of the response functions of
function (19) we used the Constrained Non Linear Regression program of the
SPSS software (see Table 6).

Tab. 6: Estimates of three sets of the aggregated part-worths utilities of the coa logistic
regression model

Levels Overall | Estimated coeffi- Overall Estimated coefti- | Overall | Estimated coeffi-

category cient of the category cient of the category cient of the
1st equation 2nd equation 3rd equation
g] -0,21 52 -0,71 53 -1,25
Baseline ~() ~(1) ~()
(51(2 0,05 055 -0,01 33> -0,06
8 years

“unde- | 3(2) | -036 | “desira- | 3(2) 0.14 |“most | 3(2) 0.30
‘ %3 ’ 95 ’ - | 952 '
5,000 € |sirable ble” desir-

S(3) _ (3 » (3
o o5 1,34 3 | L12 | able | 65 | 0.01
o 53 5(3) 5(3) 18
o
Nikkei 8y | 141 553 | 107 553 | o1

Income” 5](;) 0,65 52(3) -0.20 53(3) -0,90




Full-profile Conjoint Analysis: Some Measuring, Modeling and ... 59

Tab. 7. Comparison between observed frequencies (f, ) and probability values (B,)
estimated through the multivariate logistic modél, for the overall categories

Frequency and Overall Overall Overall
probability category: category: category:“most
Stimulus “undesirable” “desirable” desirable”
() (1) (¥5)

* Jis Pks fa Phks Fas Pks
1 0,45 0,44 045 0,35 0,10 022
16 0,10 0,13 0,61 0,64 0,29 0,26
9 0,08 0,13 0,60 0,59 0,32 0,30
18 0,10 0,14 0,60 0,62 0,30 027
12 0,05 0,12 0,67 0,62 0,28 0,29
19 0,52 0,46 0,34 0,32 0,14 0,22
10 0,08 0,18 0,54 0,60 0,38 0,21
24 0,12 0,17 0,48 0,58 0,40 024
2 0,10 0,17 0,50 0,63 0,40 0,20
13 0,50 0,36 | 043 0,36 0,07 0.28
5 0,51 0,38 041 0,33 0,08 0,28
17 0,10 0,16 0,55 0,61 0,35 0,23
6 0,35 0,24 0,54 0,56 0,11 0,13
21 0,31 0,29 0,54 0,52 0,15 0,11
15 0,31 0,22 0,60 0,59 0,09 0,13
7 0,59 0,60 0,26 0,30 0,15 0,10
23 0,32 0,22 0,57 0,56 0,11 0,15
8 0,27 0,28 0,62 0,57 0,11 0,09
14 0,29 0,27 | 053 0,55 0,18 0,11
11 0,58 0,55 0,22 0,28 0,20 0,14
20 0,33 0,30 0,59 0,54 0,08 0,10
4 0,34 0,23 0,52 0,53 0,14 0,15

3 0,63 0,62 0,33 0,27 0,04 0,10
22 0,59 0,53 0,24 031 0,17 0.14

In order to empirically asses the predictive capacity of the estimated model,
Table 7 shows the probabilities estimated for all the modality combinations of
the factors and the corresponding values of the observed proportions.

We observe a satisfactory model fitting, as the predicted probabilities turn
out to be near the corresponding proportions for all the level combinations of
the experimental design.

The most desirable profile is the stimulus s =12 (Policy duration: 5 years;
Minimum denomination: 5,000€;, Stock exchange index: Down Jones; Service
to expiry: paid-up capital); the least desirable profile is the stimulus s = 3
(Policy duration : 8 years; Minimum denomination: 2,500€; Stock exchange
index: Ftse/Mib; Service to expiry: income for life).
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9. LOGISTIC REGRESSION RESPONSE WITH MAIN AND
INTERACTION EFFECTS

In this model the polytomous response variable (i.e. evaluation of the overall
desirability of alternative product profiles) is described by a sequence of binary
variables.

To link the categories of overall evaluation to the factor levels, we adopt —
at the aggregated level — a multivariate logistic regression model, based on a
main and two-factor interaction effects experimental design.

The model provides as many overall desirability functions (aggregated
part-worths sets), as the overall ordered categories are.

The model is reparametrized using as reference category (see Section 8).
The algebraic form of the response functions with main and first-order
interaction effects is:

~ Mo Ly Moy By
g (Z,)= o, +E 2 8"z + E Sz + ey (20)
m=1 [=2 m=1 1=2 h=2
k=1,...,q(eeSection8); s=1,2,...,8;, h=12,..,;p=m+1,m+2,
. M,
where:

§k (is) is the logit of the sth profile with regard to the kth dependent variable;

5k0 is the constant term;

0 k([m) is the unknown regression coefficient for the /th level of factor m;

El(sm)is the dummy variable for the /th level of factor m in the combination s.

El%’p ) is the dummy variable correspondent to / level of factor m and to the A
level of factor p in the stimulus s;

e, is the error term pertinent to the stimulus s.

The g equations g, (is) can be expressed compactly as follows:

g =78 @1)
where:

#* ~
g is a compound vector of g column vectors g;(Z);

~

Z s a square compound diagonal matrix, containing gxg sub-matrices Z (the
Z denotes the design matrix of equation (20) ;

~

d isa compound vector of the ¢ column vectors & i
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To estimate the multivariate model parameters we need to consider the
variance-covariance matrix @ . The estimates of the @ matrix elements are

calculated on the basis of estimations IA’ksj obtained by performing logistic

regression analysis separately on each dependent variable, using the maximum
likelihood method to each equation (21).

To estimate the multivariate logistic regression model we minimize the
following mathematical expression:

[ g Nk T A_l *® ok Uk
F=(g-Z"8) @ (g -Z°8"). (22)

where (i)_l is the inverse matrix of the @ -

To estimate the parameters (part-worths) of the response functions of
equation (22) was used the Constrained Non Linear Regression program of the
SPSS software.

9.1 THE APPLICATION: DESIRABILITY OF INSURANCE POLICIES

The model was applied to the overall desirability evaluations expressed on K =
3 ordinal categories: “undesirable”, “desirable”, “most desirable”, by a sample
of J= 100 insurance officers (homogeneous respondents) on S = 24 profiles of
the insurance policy (see Section 8.1).

The M = 4 attributes were: X = “policy duration” (with levels: 5, 8 years);
X5 = “minimum denomination” (2,500 €, 5,000 €); X5 = “stock exchange index”
(Ftse/Mib, Dow Jones, Nikkei), Xy = “service to expiry” (paid-up capital,
income for life).

To estimate the parameters of the response functions of equation (22) was
used the Constrained Non Linear Regression program of the SPSS software.
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Tab. 8: Full factorial design with restricted casualisation of four factorsand factor levels of

theindex-linked life policy

Stimulus Policy duration Minimum Stock exchange | Service to expiry
(years) denomination index
(euro)
(s) X o) X (Xo)
1 5 2500 Nikkei paid-up capital
16 5 5000 Comit paid-up capital
9 8 5000 Dow Jones paid-up capital
18 8 5000 Comit paid-up capital
12 5 5000 Dow Jones paid-up capital
19 8 2500 Nikkei paid-up capital
10 8 2500 Comit paid-up capital
24 8 2500 Dow Jones paid-up capital
2 5 2500 Comit paid-up capital
15 5 5000 Nikkei paid-up capital
5 8 5000 Nikkei paid-up capital
17 5 2500 Dow Jones paid-up capital
6 8 5000 Comit income for life
21 8 2500 Dow Jones income for life
7 5 5000 Comit income for life
23 5 2500 Nikkei income for life
8 5 5000 Dow Jones income for life
14 5 2500 Comit income for life
11 5 2500 Dow Jones income for life
20 8 5000 Nikkei income for life
4 8 2500 Nikkei income for life
13 8 5000 Dow Jones income for life
3 8 2500 Comit income for life
22 5 5000 Nikkei income for life

These estimates of the regression coefficient values, which are equal to the

constant term plus the corresponding parameters, are given in Table 9 (5,;”%

the coefficient relative to equation &, factor m and level /). The positive signs of
the coefficients indicate that the respective response variables increase in

relation to the level in the single product factor and vice-versa.

In order to empirically asses the predictive capacity of the estimated model,
Table 10 shows the probabilities estimated through model (22) for all
combinations of levels (experimental conditions) of the explanatory variables
and the corresponding values of the observed proportions.
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Tab. 9: Estimates of three sets of the aggregated part-worths utilities of the Coa model

Overall Estimated Overall Estimated Overall Estimated
category | coefficient of the | category | coefficient of the | category coefficient of the
first equation second equation third equation
3 -0,093 & 0,409 3 -1,955
5 51 5D
55 0,126 6yy | -0.073 o3 | -0.136
5(2) $(2) 5(2)
0% 0,058 853 0,181 93" | -0.704
(3 NE 503)
o | 2165 o | os2s 635 | 1446
(3 Py 5(3)
o | -2267 oD | oss1 933 1,458
X4 (4 (4
SV | 0403 o33 | -0.465 33" | 0,041
5(12) (12 5(12)
925" | “0.070 S 0108 0325 | 0547
“undesira- 513) -0,120 ] “desirable 503 0.009 “more 503) 0,201
ble” 122 ” 229 desirable” 322
-0,026 -0,122 0,305
5(13) 5(13) 53)
03 | 0113 o3 | o111 9323 | 0,640
S(14 -0,019 ~(14° 0,207 (14 0,256
53 ) 5353
-0,131 0,394 0,087
5.23) 23] - 5(23)
355 0,152 62(22) 0,477 3335 0,767
5(23) (23 503230 .
3153 0,935 (52(23> 0,747 3353 0,156
24| 1,052 ~(24 0,503 syl -1153
9125 (52(22) 3335
5(34) (34 5(34)
’ S g
3 500 50%)
132 232 332

We observe a satisfactory model fitting, as the probabilities turn out to be
very near the corresponding proportions for all the level combinations of the
experimental design.
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Tab. 10: Comparison of the probabilities, estimated by the Coa model, and the
corresponding proportionsfor all the level combinations of the experimental design

p Predic- b . Predic- P Predic-
Experimental conditions TOPO fod pro- TOPOrtl 4oq pro- TOPOIt 4oq pro-
TUons p, - 1S pabi- || 17 babi-
Obesgf lities °bsdefve lities °"S§'Ve lities
Vi
7,(2,) 7,(2,) 732
D 2 g 3 g
o=k =L =Lz =1 045 0,48 045 040 0,10 0,12
1 L2 L3 L4 .23
B O A | 0,10 0,10 0,61 062 029 0,28
1y 2y _ 3 _ “) _ 2y _ . (L3 _ . _(23) _
2y =L =hay =z =Lz =13 =Ly =1 008 0,08 060 0,60 032 0,40
D _ 1@ 120 1@ _1 0D _ 0 2D
zy =L =l =L =Lz = Lo =Ly =1 0,10 0,09 060 058 030 0,41
R R R s 005 008 || 067 o067 [| 028 025
S 1.2 _q.03) _ Ay _
o =kt =L =Lz =1 052 0,51 034 038 014 0,11
1y 2y _ .03 _ ) _ (13) _
zy =Lk =L =l =Lz =1 0,08 0,10 0,54 051 038 039
D _ 1@ _ 12O @ 0 _
zy =knT =l =L =Lz =1 0,12 0,09 048 049 040 0,42
RO RNC) N O B RO NI
aqo=bnT =l =L = 0,10 0,09 050 053 040 038
RONRNC) NG NP RNO NI
ao=ba =k =Ly = 050 049 043 044 007 007
D _1 @ _1 -0 13 _q 0D _
23 =L =kt =l =zt =1 0,51 0,51 041 040 0,08 0,10
W _ 1@ _ 143 _p 2@ _
20 =Lz =z =L =1 0,10 0,09 0,55 054 035 038
1 2 3 4 1,2 L (13 . (L4 2,3 2.4 34
:§)=1,z(2 )=1,z(2)=1,:(2)=1,:§2 )=1,z§2 )=l,-§2 )=1,z(22 )=l,z(22 )=l,z(22 =1 035 034 0,54 0,56 0,11 0,15
1y L -(2) A3 “4) (13) (1,4) R ER))
2 =k = ks = hzy =L =Lzl = Loyt =1 031 033 054 052 [| 015 o1l
D L T2y 031 0,33 0,60 058 0,09 0,15
W _ 1@ _ 13 _p 2@ _
z) =Ly =Lz =L =1 0,59 0,58 026 029 015 0,13
LD _ @ B _ @) @D @A) _ G4 _
o =hzy =lz =z =Ly =L =1zt =1 032 0,30 057 057 011 0,19
D Mt T R | 027 029 062 060 011 0,12
{1 (2) (3) ) (3.4)
2 =Lz =Lz =Ly =Lzt =1 029 029 053 055 018 0,17
D _ 1@ _ 12O @ _ 0D g 0 _q G4 _
zy =L =l =Lz =Lz = Loy =Lz =1 065 0,67 022 022 013 0,11
B e 0,63 063 033 030 004 0,06
A _ 2y _ 3y _ 4y _ (1L2) _ 4. _(13) _ (L4) _
D =hzy =l =l =Lzt = Loy =1z =1 034 034 052 052 014 020
1 e e 4 13 14 L34
2 =P =1z =120 21280 <128 < 12GY 1 033 031 059 061 008 0,07
AV =12 =1 -1 -1 -1 0,63 0,63 024 024 013 0,14

10. SUMMARY TABLE OF THE APPROACHES TO FULL-PROFILE
CONJOINT ANALYSIS BY MULTIPLE LOGISTIC REGRESSION

ANALYSIS

Table 11 showsthe summary of all models characteristics of conjoint modeling by

multiple logistic regression analysis so far submitted.
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Tab. 11: Characteristics of conjoint modeling by multiplelogistic regression analysis

Alternative 1. Ordinal logistic 2. Multivariate logistic | 3. Multivariate logistic
approaches regression to regression to estimate regression to estimate
estimate the response | the response response functions with
Characteristic Sunctions Sfunctions main and interaction effects
1.Scaling of the Multicategory Multicategory Multicategory assignment
response data assignment assignment

2. Level of response
aggregation

Aggregated level

Aggregated level

Aggregated level

3.Estimation method

Cumulative logit
model

Constrained Non
Linear Regression
model

Constrained Non Linear
Regression model
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