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Abstract. The paper introduces the preference data analysis, as settled in the scope of
Conjoint Analysis, into the general framework of the Partial Least Squares approach to
Structural Equation Models. The aim is to define a common background for interpreting the
Conjoint Analysis results in terms of a path model. Once established this correspondence,
we discuss how the proposed approach may represent a tool to enrich the data collection,
model specification and results interpretation phases.
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1. INTRODUCTION

Metric Conjoint Analysis (CA) represents one of the main methods for the analysis
of preference data, aiming at estimating the importance of some selected
characteristics of a set of potential products or services, called stimuli, as a function
of the global preference expressed by a set of judges. It is a decompositional
method, mainly based on Design of Experiments and OLS Regression model
(Green & Rao, 1971; Green & Srinivasan, 1978; Green & Krieger, 1991).

The peculiar data structure of CA is based on the combination of i) a design
matrix holding dummy variables, describing a set of stimuli in terms of the
presence/absence of specific levels of some fixed attributes and ii) a preference
matrix, where each column includes the ratings expressed by a single judge on
the set of stimuli. The method aims at estimating the partial utility coefficients
(part-worths), i.e. the weight of each level in composing the individual preference
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expressed by each judges. Individual preference models are usually aggregated by

averaging the part-worth coefficients to obtain the aggregate preference model.
Different variants of the traditional OLS regression model have been consid-

ered in the specialized literature (for a discussion see Furlan & Corradetti, 2005).

We refer to Structural Equation Model (SEM, Jöreskog, Sörbom, 1979) and to

the Partial Least Squares approach to SEM (PLS-SEM or PLS-PM, Wold, 1975;

Tenenhaus et al., 2005) for its estimation. Based on the block structure of the

design matrix and on the hypothesis that stated preference depends on the char-

acteristics of stimuli, we propose to interpret the Conjoint Analysis in terms of a

path model in a multivariate multiple regression framework.

This model specification allows to estimate, at the same time, the aggregate

preference as a multivariate synthesis of the individual preferences and the part-

worth coefficients.

A reading of the Conjoint Analysis model in the PLS framework was pro-

posed by Tenhenaus in 1998 using PLS regression (Wold et al., 1983). The use of

PLS path-modeling in the analysis of consumer behavior was introduced by Pagès

and Tenenhaus in 2001 for dealing with groups (blocks) of variables observed on

the same set of stimuli. They used Multiple Factor Analysis (Escofier, Pagès,

1994) as an exploratory tool to define blocks, combined with PLS Regression

and Path-Modeling, for predicting hedonic judgements on the basis of sensory

and physicochemical characteristics of a set of products. Later, Tenenhaus et al.

(2005) used the same strategy to find clusters of homogeneous consumers. Some

more recent examples of application of PLS-PM to multiblock preference data

structures in sensometrics can be found in Menichelli, 2013; Cariou et al., 2018;

Llobella et al., 2020.

In the model we propose, referred to as PLS-PM preference analysis, we

look at rating data collected at individual level as observed expression (mani-

fest variables) of a latent construct representing the aggregate preference. More

specifically, in the path model we specify the aggregate preference is defined as

an "endogenous" latent variable that is affected by a set of "exogenous" latent

variables, representing the attributes.

In this setting, we use a simulated dataset to establish the correspondence

between the basic elements and estimates provided by the metric CA and the

PLS-PM preference analysis. Then we show how the proposed model allows to

detect possible heterogeneity among the set of respondents in order to identify

different market segments.

Many authors proposed segmentation strategies in the multiblock data anal-
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ysis and PLS-PM context (Ringle et al., 2013; Llobella et al., 2020). However, it

is worth to note that the stimuli are the statistical units, while respondents’ ratings

play the role of variables, thus within the path model finding market segments is

a clustering of variables issue.

The paper is organized as follows: Sections 2 and 3 give a general recall to

the CA and to the PLS-PM models respectively; Section 4 introduces the PLS-PM

preference analysis and describes the details of the model specification; in Section

5 we refer to a simulated dataset for assessing the correspondence and coherence

between the CA and PLS-PM results; then, in Section 6 we apply our findings

to a case-study, showing how an enhanced interpretation of PLS-PM results is

possible.

2. THE METRIC CONJOINT ANALYSIS MODEL

In this context we refer to the metric CA approach in which the multiple linear

regression model is used to estimate the part-worth coefficients for each judge.

Let X be the design matrix of size S×L, whose rows refer to the administered

stimuli and columns to the L = ∑K
k=1 lk levels of K attributes (i.e. the kth attribute

has lk levels). The design matrix X is a partitioned matrix consisting of K blocks

of indicator matrices Xk (k = 1, . . .K):

X = [X1| . . . |Xk| . . . |XK ] (1)

The matrix Y:

Y = [y1| . . . |yg| . . . |yG] (2)

has dimensions S×G and holds the responses given by G judges to the S stimuli.

The explanatory variables x j ( j = 1, . . . ,L) are binary indicators associated

with the levels of each attribute based on experimental design. The basic individ-

ual CA model for the judge g is expressed as:

yg = βg1x1 + . . .+βgLxL + εg g = (1, . . . ,G) (3)

where εg is the vector of error terms. The regression coefficients βg j,( j = 1, . . . ,L)
can be interpreted as individual part-worth coefficient of the level j for judge g.
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According to the above notation, the CA model in Equation 3 can be written

as the multivariate regression model:

Y = XB+E (4)

where the matrix B holds the OLS estimation, interpreted as part-worth coeffi-

cients associated to the attribute-levels for each judge, while E is the error term

matrix. Due to rank deficiency of the design matrix, coefficients are identified

by imposing usual constraints, e.g. by dropping one column for each factor and

posing the relative coefficient equal to zero. Let us note that the coefficients in

B are obtained as in separate OLS regressions. The individual part-worth coeffi-

cients are then used to predict market segments and product positioning (Green,

Krieger, 1991).

An aggregate utility function requires a suitable synthesis of individual utili-

ties. Among many possible solutions, the average preference model is commonly

used, lying on the hypothesis that respondents belong to a homogeneous set. The

homogeneity can be either defined based on some stratification (typically socio-

demographical) variables (i.e. ex-ante segmentation) or deduced from the detec-

tion of clusters (i.e. ex-post segmentation).

3. THE PLS APPROACH TO STRUCTURAL EQUATION MODEL

In reading the CA model in terms of a Structural Equation Model we refer to

the PLS approach (Wold, 1975; Tenehaus et al., 2005; Hair et al., 2014), which is

one of the most used estimation method for SEM and is coherent with the predic-

tive feature of the multivariate regression model underlying Conjoint Analysis.

According to the traditional PLS-PM notation, let Z be a data matrix parti-

tioned by column in H blocks:

Z = [Z1| . . . |Zh| . . . |ZH ] (5)

of order n× p, where each block Zh (h = 1, . . . ,H) has dimensions n× ph and

∑H
h=1 ph = p, n is the number of stimuli and p the number of all attributes’ levels.

A path diagram (Figure 1) is the typical representation of a causal model

where each block Zh is a set of manifest variables and is conceptually connected

to a latent variable ξh. In such a diagram, rectangles represent Manifest Variables

(MV i.e. zh j, j = 1, . . . , ph) ellipses are the Latent Variables (LV i.e. ξh) and

arrows describe the relations between them, supposed to be linear.
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Two sub-models are combined in the path diagram: the structural model (also

called inner or path model) including the relations among latent variables, and the

measurement model (also called outer model), including the relations between

each manifest variable and the corresponding latent variable.

The directions of the arrows describe different model specifications of both

sub-models: the structural model includes exogenous latent variables, i.e. latent

variables which do not depend on other latent variables, and endogenous latent

variables, i.e. latent variables which depend on other latent variables; the mea-

surement model can be reflective (referred as mode A), when the manifest vari-

ables are a reflection of the latent variable (i.e. dealing with an independent LV

and dependent MVs) or formative (mode B), when the manifest variables affect

the latent variable (i.e. dealing with independent MVs and a dependent LV). It

is worth to note that block’s unidimensionality is a necessary condition for a re-

flective measurement model: lacking of unidimensionality requires a formative

model.

PLS path modeling is defined to deal with metric data for the dependent MV.

However, quasi-metric data stemming from multi-point scales, such as discrete

ratings or rankings, are also acceptable as long as the scale points can be assumed

to be equidistant and there are five or more scale points (Rhemtulla et al., 2012). It

is also possible to include categorical variables in a model. If a categorical variable

has only two levels (i.e., it is dichotomous), it can immediately serve as a construct

indicator. As in the case of the conjoint analysis model, categorical variables with

more than two levels should be transformed into as many dummy variables as

levels minus one (the reference level). Preferably, categorical variables should

only play the role of exogenous variables in a structural model (Henseler, 2017).

A non-metric approach to PLS-PM has been addressed in (Russolillo, 2012) to

handle both metric and non-metric variables at once, based on optimal scaling

Fig. 1: Path diagram with two exogenous latent variables (ξ1 and ξ2), one endogenous latent
variable (ξ3). All indicators are reflective.
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features.

3.1. THE PLS-PM ALGORITHM

The PLS approach to SEM is an iterative algorithm aimed at estimating latent

variables scores through alternated simple and multiple linear regressions. On

a first instance it provides an external estimation of the latent variable, then an

internal estimation is obtained.

The PLS-PM algorithm estimates 3 sets of parameters:

− Latent Variable scores uh,

− Path coefficients (or inner weights) dhh′ of exogenous LV ξh on the endoge-

nous ξh′ ,

− Outer weights wh j of the manifest variables zh j on ξh,

and is based on alternating, until convergence, an external and internal estimate

of the LV’s, based on OLS regressions, according to the following steps:

1. Outer estimation: the estimate vh of the LV ξh is obtained as:

vh ∝ ±
(

ph

∑
j=1

wh jzh j

)
(6)

that is a linear combination of the MV zh j (h = 1, . . . ,H; j = 1, . . . , ph),

using arbitrary weights wh j on the first iteration.

In a reflective block, each MV depending on the LV, the outer estimation is

based on a set of ph simple regression models; in a formative block, the LV

depending on its MVs, the estimation comes through a multiple regression

model.

2. Inner estimation: based on vh, a new estimate uh is obtained for each LV ξh

relating them to one another according to the structural scheme as follows:

uh ∝ ∑
h′

dhh′vh′ (7)
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where the dhh′ are the inner weights and can be set equal either to the

sign of the correlation coefficient between the outer estimates vh and vh′

of the h-th and the h′-th LVs (Centroid scheme), or to the correlation coeffi-

cient between them (Factor scheme), or to their regression coefficient (Path

scheme).

3. Computation of the outer weights wh j based on the covariance between

observed zh j and the inner estimate of the LV uh:

wh j ∝ cov
(
uh,zh j

)
. (8)

At each iteration, the partial results for outer weights from Equation 8 are used in

Equation 6 for the next outer estimation step. Once convergence between inner

and outer estimates is reached, ξh estimates are used in a set of OLS regressions

for determining the path-coefficients (or inner weights) i.e. the coefficients of the

structural relations. For more details about the algorithm see (Tenehaus et al.,

2005).

After the iterative procedure, some indicators are computed for interpreting

results and model fitting. Among them, we will focus on loadings ρzh j,uh , i.e.

the correlations between each manifest variable and the final estimate of the cor-

responding latent, and cross-loadings τzh j,uh′ , i.e. the correlations between each

manifest variable and the other latent variables.

4. THE PLS-PM PREFERENCE ANALYSIS

In this section we will link the Conjoint Analysis data structure to the PLS-

PM specification by adapting the path-model to the metric CA. We then restate

the matrix Z in Equation 5 as the juxtaposition of matrices X and Y in Equations

1 and 2. Z is partitioned in H = K +1 blocks and has dimension S× (G+L).
As shown in Figure 2, in this specification each block of X, that is each of

the K attributes of the design matrix, is related to an exogenous latent variable ξ ,

while the preference matrix Y is related to an endogenous latent variable η .

In order to represent the dependency relationships stated by the CA model, we

adopt all formative measurement models for exogenous blocks (attribute-levels)

and the reflective measurement model for the endogenous latent variable (prefer-

ence data).

Some considerations led to this choice (see Section 3): i) the blocks of X do

not specify a unidimensional concept (i.e., the reflective model does not comply);
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ii) the model as a whole should respect the CA basic hypothesis that the charac-

teristics of the stimuli in terms of attribute-levels (blocks of the matrix X) have an

effect on the revealed preferences (block Y); iii) the aggregate preference latent

construct determines the individual rating expression, then the block Y is set as

reflective.

In the next section we show that in such a model the cross-loading τxh j,η ,

between the jth level of the kth factor xh j and η , can be interpreted as the part-

worth coefficient of xh j, while the outer loadings of the latent variable η , ρY,η ,

measuring the correlations between the observed judges’ ratings and the underly-

ing preference construct η , can be used to detect possible heterogeneity among

judges.

Due to the peculiar structure of the design matrix X and, thus, to the inde-

pendence between blocks (factors are orthogonal each other), each τxh j,η is equal

to the product between the outer loading of xh j and the inner loading linking the

block ξ j with the latent preference η , i.e. τxh j,η = ρxh j,ξ j ×ρξ j,η .

Results from the two approaches overlap when dealing with a balanced design

(and both the CA and PLS-PM estimates are provided at individual level).

We show these properties through a basic case-study with simulated prefer-

ence data.

5. A TOY-STUDY TO DESCRIBE THE PLS-PM PREFERENCE ANALY-
SIS

In this section we apply the proposed approach to simulated data in order to

check the expected relationships and to give a clear interpretation of the PLS-PM

Fig. 2: The path-model for preference data analysis
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estimates in terms of the traditional metric CA results. Afterwards, we will be

able to interpret the PLS-PM estimates applied to more general preference data

structures.

Let X be the matrix holding the 24 full factorial experiment related to four

factors (X1,X2,X3,X4) described by two levels each (low level = −1; high level

= +1), for a total of 16 profiles.

Let Y be the matrix holding the preference ratings assigned by 50 simulated

judges to the 16 stimuli profiles.

The preference ratings in Y have been simulated by imposing the presence of

two homogeneous groups of respondents (25 judges each). Data were generated

from two multivariate Wallenius’s non-central hypergeometric distribution (Wal-

lenius, 1963), with suitable parameters to obtain the 16 ratings of 50 categorical

random variables (the judgments) interpreted as preference data.

The multivariate Wallenius distribution rules the extraction of n balls of k dif-

ferent colors from a biased urn. In our case the k colors represent stimuli with

given probability of being extracted p(S1), ..., p(Sk); the urn is biased since the

probabilities for each stimulus to be extracted are different. The process simulates

the distribution of a total amount of score (n) among the stimuli. It is equivalent

to assign one point to each stimulus each time it is extracted, so that the value

assumed by the random variable represents the final rating to each stimulus. Sim-

ulated data can be obtained acting on the probabilities p(S1), ..., p(Sk) in order

to reflect two groups of judges, each group having strong internal coherence but

showing reverse preference patterns when compared to the other.

5.1. The analysis at individual level

Let us first consider the analysis of an individual model (data in Table 1), the

OLS results are reported in Table 2.

The metric Conjoint Analysis results show evidence of significant effects of

the factors, specifically X1 (p-value: < 0.001) and X2 (p-value: 0.003); the ad-

justed R2 is equal to 0.773. Since contrasts in the design matrix are coded so that

effects sum up to zero, the part-worth coefficients of the missing levels in each

factor can be easily derived by changing the sign of the estimated coefficients,

that is βk2 = −βk1, k = 1 . . . ,4, (i.e., if β11 = +2.875 then β12 = −2.875; and so

on). In this trivial case, dealing with a balanced design of four factors at two levels

and only one judge, the PLS-PM results are identical to the OLS estimates of the

metric Conjoint Analysis model. Specifically, looking at Figure 3, the outer model

is trivially determined being all loadings equal to 1 (as well as weights when y is
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y X1 X2 X3 X4

3 -1 -1 -1 -1

1 -1 -1 -1 1

1 -1 -1 1 -1

3 -1 -1 1 1

6 -1 1 -1 -1

5 -1 1 -1 1

5 -1 1 1 -1

3 -1 1 1 1

5 1 -1 -1 -1

8 1 -1 -1 1

8 1 -1 1 -1

7 1 -1 1 1

10 1 1 -1 -1

15 1 1 -1 1

8 1 1 1 -1

12 1 1 1 1

µy = 6.250 ry,X1
= 0.767 ry,X2

= 0.467 ry,X3
=−0.100 ry,X4

= 0.133

Sy = 3.872

Table 1: y: individual simulated preference scores, ties allowed; X: 24 Full
Design Matrix; Contrasts: Sum = 0. Last row: Mean and St.dev. of y; Cor-
relation coefficients between Y and each factor.

Estimate Std. Estimate S.E. t-value Pr(> |t|)
(Intercept) 6.250 *** 0.000 0.462 13.540 0.000

X1 2.875 *** 0.767 0.462 6.228 0.000

X2 1.750 ** 0.467 0.462 3.791 0.003

X3 -0.375 -0.100 0.462 -0.812 0.434

X4 0.500 0.133 0.462 1.083 0.302

R2 : 0.833; Ad j.R2 : 0.773; N.obs. : 16; RMSE: 1.85 on 11 dof
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Tab.1: y: individual simulated preference scores, ties allowed; X: 24 Full Design Matrix;
Contrasts: Sum = 0. Last row: Mean and St.dev. of y; Cor- relation coefficients

between Y and each factor.

Tab. 2: Individual Conjoint Analysis Model.

standardized). As a consequence, for the latent preference, the Redundancy, that



A Path-modeling Approach to Preference Data Analysis 95

measures the quality of the structural model for each endogenous block, corre-

sponds to the R2 of the CA model.

Then, the PLS-PM cross-loadings, representing the linear correlation coef-

ficients between each manifest factor block X and the latent preference η , here

coincide with the inner weights. In a general setting, they are equal to the product

between the inner weights and the outer loadings, that is τxk1,y = ρx1,Xk ×βXk,y.

Note that the cross-loadings are equal to the linear correlation coefficients

between the dependent variable and the X factors (see Tables 1 and 2) and if

the dependent variable were standardized they would be equal to the part-worth

coefficients.

This results established a proper specification of the PLS-PM in terms of the

CA model. In the following we extend the PLS-PM specification to the case of

multiple responses.

Let us now consider the whole set of simulated preference data. They are

related to two homogeneous subgroups of judges revealing two opposite prefer-

ence structures. In the classical CA framework it is possible to derive an aggre-

gate model for the whole set of respondents. It is usually estimated by using as

dependent variable the average of individual preference scores; the coefficients

estimated for the aggregate, average model, are reported in Table 3.

The PLS-PM specification including the whole set of judges leads to the re-

sults shown in Figure 4. In this case the cross-loadings are still equal to the inner

Fig. 3: The PLS-PM estimations: one-judge case
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Estimate Std. Estimate S.E. t value Pr(> |t|)
(Intercept) 6.250 *** 0.000 0.072 87.198 0.000

X1 0.020 0.006 0.072 0.279 0.785

X2 0.005 0.001 0.072 0.070 0.946

X3 -0.188 * -0.005 0.072 -2.616 0.024

X4 -0.168 * -0.005 0.072 -2.337 0.040

R2 : 0.530; Ad j.R2 : 0.360; N.obs. : 16; RMSE: 0.29 on 11 dof
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

weights, being the outer weights equal to 1, but they are no longer identical to the

standardized partial utility coefficients obtained by the aggregate CA model. This

is expected, since the two approaches optimize two different criteria.

The main drawback of estimating CA model on the average preference is

that the presence of two respondents’ patterns is not considered and cannot be re-

vealed by standard results. Further investigation is needed before carrying out the

aggregated model by exploring the individual utility models for all respondents.

Conversely, PLS-PM takes into account the covariance structure of response

variables and allows to discriminate among the response patterns.

In our case, the presence of two groups in matrix Y emerges from the individ-

ual outer loadings (as well as from outer weights) related to the latent aggregate

preference (Vigneau and Qannary, 2003). In fact, in such cases judges belong-

ing to different groups show opposite signs in their correlations with the latent

aggregate preference (see Figure 4).

Generally speaking, the outer loadings can be seen as a tool to identify pos-

sible preference sub-models: they, in fact, measure judges’ individual coherence

with the aggregate preference, so that their different signs reveal different attitudes

toward the aggregate preference, (i.e., heterogeneity among judges).

Beyond this trivial case, whereas different signs among judges loadings ap-

pear, we propose to use Cluster Analysis in order to reveal aggregate patterns of

preference models present in the data and to understand how many clusters of

judges are there. The dendrogram obtained by Complete Linkage method on the

outer loadings is represented in Figure 5, where the presence of two groups (and

their composition) clearly emerges.

Thus, we use these results to specify a new path model in order to consider

Tab. 3: Aggregate Conjoint Analysis Model.
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two latent preference models. The new model specification and the results are

shown in Figure 6. The two latent aggregated preference variables show a corre-

lation of −0.96. The two preference models have been identified as follows:

Pre f1 = 0.8828X1 +0.4387X2 +0.1149X3 −0.0850X4 (9)

Pre f2 =−0.8512X1 −0.4226X2 −0.2617X3 −0.0461X4 (10)

where Pre f1 and Pre f2 are the scores corresponding to the two latent preference

Fig. 4: The PLS-PM weights estimations on the whole judges set.

Fig. 5:  Cluster of the 50 PLS-PM outer loadings. Euclidean distance, Complete Linkage
method
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sub-models.

In conclusion, this toy study shows how it is possible to derive suitable model

description from raw data and to assess the correspondence between the CA model

and PLS-PM approach to preference data. In the following section we apply the

PLS-PM preference analysis to a real dataset.

6. THE PLS-PM PREFERENCE ANALYSIS: A CASE STUDY

In this section an application of PLS-PM preference analysis is shown, us-

ing survey data included in the R package Conjoint (Bak, Bartlomowicz, 2012).

The survey aimed at estimating the importance of 5 attributes describing differ-

ent kinds of chocolates, namely Type (levels: Milky, Stuffed, Delicacies, Sour),

Price (levels: Low, Medium, High), Packaging (levels: Soft pack, Hard pack),

Size (levels: Small, Medium, Large) and Calories (levels: Low calories, High

calories).

In this example, the fractional design X includes 16 profiles of chocolates and

Y holds the preference ratings expressed by 87 judges.

As shown in Figure 7, the path model specification for preference analysis on

this data includes five exogenous latent variables, representing the five attributes,

each described by the corresponding levels, affecting the endogenous aggregate

preference.

We use the effect coding for the attribute-levels and standardized manifest

Fig. 6: The estimates of the PLS-PM inner model with two sub-models.
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Unless the CA aggregate part-worth coefficients and PLS-PM cross-loadings

appear highly coherent, the presence of different signs of the outer loadings of

the preference latent variable reveals heterogeneity among judges, suggesting to

proceed with a Cluster Analysis. The Euclidean distance between judges is then

derived and the Complete linkage criterion has been used.

Based on the dendrogram in Figure 8 we split the judges into three groups,

each defining a latent preference sub-model.

Table 5 shows the three resulting preference models. They can be interpreted

in terms of a classical Conjoint Analysis output, that is attribute importance, ideal

product and maximum utilities can be derived.

The range of the cross-loadings values for each factor provides a measure of

how important the factor is to overall preference. Factors with greater ranges play

a more significant role than those with smaller ranges.

Attributes importance for the three preference submodels are shown in Table

6, where clearly appears that attributes type and price are discriminant between

groups, while attributes package and size play a marginal role for all the three

groups; calories is important for all groups. Specifically, groups 1 and 3 assign

high importance to type and calories, while group 2 considers price and calories

Fig. 7: Path-model estimations for preference analysis of chocolate data

variables. In this case, we obtain the results for dropped levels by setting the sum

of the cross-loadings for each attribute equal to 0.

In Figure 7 the outer and inner estimates are displayed, while Table 4 shows

both the partial utility coefficients provided by the aggregate CA model and the

PLS-PM cross-loadings between latent preferences and attribute-levels.
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as leading factors.

Table 7 summarizes the three ideal profiles. Provided that the attributes type
is the most discriminant, it is evident how its levels differently characterize each

group.

Fig. 8: Dendrogram of the cluster analysis on the judges’ outer loadings.

Tab. 4: CA partial utility coefficients and PLS-PM cross-loadings

Attribute Level CA standardized PLS-PM
coefficients cross-loadings

Milky 0.428 0.821
Type Stuffed 0.288 0.744

Delicacies 0.363 0.816
Sour -1.079 -2.381

Low 0.263 0.100
Price Medium -0.047 -0.022

High -0.216 -0.122

Packaging Soft 0.016 0.016
Hard -0.016 -0.016
Small 0.078 0.026

Size Medium -0.068 -0.046
Large -0.010 0.020

Calories Low 0.360 0.157
High -0.360 -0.157
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Tab. 5:  PLS-PM cross-loadings between levels and the three latent preferences

Attribute Level Model 1 Model 2 Model 3

Milky -0.320 0.021 0.380
Type Stuffed -0.341 0.112 0.215

Delicacies -0.307 -0.079 0.359
Sour 0.968 -0.054 -0.954

Low 0.077 0.878 0.112
Price Medium -0.012 -0.220 -0.040

High -0.065 -0.658 -0.071

Package Soft -0.028 -0.037 0.017
Hard 0.028 0.037 -0.017

Small 0.022 0.046 0.061
Size Medium 0.019 -0.034 -0.071

Large -0.042 -0.012 0.010

Calories Low 0.185 0.236 0.217
High -0.185 -0.236 -0.217

Tab. 6: Attributes’ importance in the three preferences submodels, relevant values are in
bold.

Type Price Package Size Calories Total

Pref 1 67.44 7.32 2.89 3.30 19.06 100

Pref 2 8.12 65.28 3.14 3.40 20.06 100
Pref 3 63.01 8.64 1.61 6.24 20.50 100

Tab. 7: Ideal profiles for the three preferences submodels.

Type Price Package Size Calories

Pref 1 Sour Low Hard Small Low
Pref 2 Stuffed Low Hard Small Low

Pref 3 Milky Low Soft Small Low

7. CONCLUSION

In this paper we propose to read the metric Conjoint Analysis model in the scope
of PLS-PM approach.

The main contribution of this paper is to define a formal correspondence
between the Conjoint Analysis results and the output of a path model estimation,
where the model specification respects the Conjoint Analysis data structure and its
decompositional nature.

We define a path model where each attribute is an exogenous latent variable,
described by attributes’ levels as manifest variables related to them, and the
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aggregate preference is an endogenous latent variable, described by all the preferences
expressed by judges.

Then, a toy-study shows how i) CA partial utility coefficients correspond to
the cross-loadings provided by the PLS-PM algorithm; ii) inner weights reproduce
the importance of attributes on the aggregate preference; iii) outer loadings of
preferences reveal the possible presence of clusters and/or outliers among judges.

The possibility to detect the presence of clusters makes the PLS-PM preference
analysis a useful tool for detecting market segments.

Another strength of the PLS-PM preference analysis is that, unlike the
classical CA model, it does not require attributes’ levels to be constrained to a design
matrix. Further research will be addressed to the generalization of this approach to
revealed preferences, where observational data can be used for describing the set
of stimuli, and a prior information on judges can be included.
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