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Abstract The transition threshold from aerobic to anaerobic metabolism of athletes prac-

tising endurance sports is identified with the deflection point in the graph of cardiac fre-

quency versus velocity. A parametric statistical background was provided (Calderoni et

al., 1990) by assuming a transition from linear to parabolic regression. By interpreting

the threshold as a jump-point for the first derivative of a continuous regression curve, the

use of one-sided kernel estimators can be a useful explorative treatment. Here Müller’s

theory of such kernels is summarized and simulations are discussed for this type of appli-

cation.
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1. INTRODUCTION

The search of the deflection point of cardiac frequency of athletes as the velocity

increases has a considerable interest since such a point coincides with the anaer-

obic threshold, i.e. the metabolic level at which the increasing of lactic acid be-

comes perceptible during a protracted intense physical effort. Indeed, beyond this

threshold an anaerobic mechanism is added to the (aerobic) mechanism of produc-

tion of ATP (adenosinetriphosphate), which is an important energy compound in

metabolism. Hence, for an athlete in an endurance sport, the anaerobic threshold

corresponds to the greatest speed which can be kept without a rapid exhaustion

of energies via an aerobic process. Now, the direct methods to single out this

threshold are certainly accurate, but they involve a laborious procedure. An indi-

rect method was first proposed (Conconi et al., 1982) and is based on the almost

linear increase of the cardiac frequency in a wide initial velocity interval (which

coincides with the aerobic zone), which is followed by a deflection when the lactic

acid starts to accumulate (anaerobic zone). Afterwards (Calderoni at al., 1990) a

methodological framework was given to that procedure by a model which consists

of two polynomial regression curves, where the transition from linear to parabolic

regression corresponds to the unknown change-point from aerobic to anaerobic
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(all the moments vanish except the ones of order ν and k). The sequence of

bandwidths b = b(n) is required to satisfy

b → 0, nb2ν+1 → ∞, limsup
n→∞

nb2(k+ν)+1 < ∞. (5)

Thus a choice of b(n) allows a corresponding balance of accuracy and precision

as n → ∞, by virtue of asymptotic behaviours (Gasser and Müller, 1979) of the

type

E[ĝn(t)−g(t)] = O[b(n)k], E[(ĝn(t)−g(t))2] = σ 2O(
1

nb(n)
). (6)

In practice, for each t, b determines the interval of data [t − b, t + b] involved in

fitting.

A development of that theory (Müller, 1992) concerns change-points, i.e. dis-

continuity points which are detectable in the regression curve or in its derivatives

and describes sudden and lasting changes appearing in various contexts of exper-

imental sciences.

Starting from the above model, let us suppose that a change-point τ , 0 < τ <

1, exists for the derivative g(ν) , so that

g(ν)(t) = f (ν)(t)+∆ν · I[τ ,1](t), ∆ν > 0, 0 ≤ t ≤ 1, (7)

where f ∈Ck([0,1]) and

IA(x) =

{
1, x ∈ A

0, otherwise
(8)

∆ν is the (negative or positive) jump in the discontinuity point τ for the ν-th

derivative of g. If ∆ν = 0 g is continuous in τ .

By defining the right and left limits of g(ν)

g
(ν)
+ (τ) = lim

t→τ+
g(ν)(t), g

(ν)
− (τ) = lim

t→τ−
g(ν)(t) (9)

and assuming g(ν)(τ) = g
(ν)
+ (τ), one can notice that

∆ν = g
(ν)
+ (τ)−g

(ν)
− (τ). (10)

The idea of the method consists of introducing one-sided kernel estimators of the

regression function, and looking for the point where the maximal difference of the
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two estimates is attained. Let K
(ν)
+ and K

(ν)
− be one-sided kernel functions, that is

with compact supports [−1,0] and [0,1] respectively. Let us define the one-sided

kernel estimators of the ν−th derivative g(ν):

ĝ
(ν)
± =

1

bν+1

n

∑
i=1

yi

∫ si

si−1

K
(ν)
± (

t −u

b
)du

Then the inference on the change-points is based on the difference between right

and left estimates:

∆̂(ν)(t) = ĝ
(ν)
+ (t)− ĝ

(ν)
− (t). (11)

The point τ̂ on which the maximum of such difference (considered in absolute

value) is attained, will be a suitable estimate of the change-point. Actually a

closed subinterval Q ⊂ (0,1) containing τ must be chosen to exclude the bound-

ary, where a more complex situation occurs (Müller, 1991). So the estimator is

defined

τ̂ = in f{ρ ∈ Q : |∆̂(ν)(ρ)|= sup
x∈Q

|∆̂(ν)(x)| }. (12)

As for the jump of the ν-th derivative, its estimator is:

∆̂(ν)(τ̂) = ĝ
(ν)
+ (τ̂)− ĝ

(ν)
− (τ̂). (13)

The following hypotheses for one-sided kernels are assumed:

K
(ν)
+ ∈Cµ([−1,0])∩Kν ,k([−1,0]), (14)

K
(ν+ j)
+ (−1) = K

(ν+ j)
+ (0) = 0, 0 ≤ j < µ , (15)

K
(ν)
− ∈Cµ([0,1])∩Kν ,k([0,1]), (16)

K
(ν+ j)
− (0) = K

(ν+ j)
− (1) = 0, 0 ≤ j < µ . (17)
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Here, denoting either [0,1] or [−1,0] by [a,b], K j,k([a,b]) is the set of con-

tinuous functions f such that supp( f ) = [a,b] and

∫
f (x)xidx =




(−1) j j!, i = j

0, 0 ≤ i < k, i � ν

� 0 i = k


 . (18)

The parameter µ = 0,1,2, ... expresses regularity, i.e. the order of differen-

tiability inherited by the estimator ĝ(ν) from the kernel.

If ν = 0 and k = 2, from the hypotheses it follows that

∫ 0

−1
K+(x)dx = 1,

∫ 0

−1
K+(x)x dx = 0,

∫ 0

−1
K+(x)x

2 dx � 0, (19)

and ∫ 1

0
K−(x)dx = 1,

∫ 1

0
K– (x)x dx = 0,

∫ 1

0
K –(x)x

2 dx � 0. (20)

If the first derivative of a regression curve has to be estimated (ν = 1), fixing

k = 3, the kernel functions must satisfy:∫
K′
±(x)dx = 0,

∫
K′
±(x)xdx =−1,

∫
K′
±(x)x

2dx = 0,

∫
K′
±(x)x

3dx � 0, (21)

and the kernel and its derivative must vanish at the endpoints. Thus, in the role of

the one-sided kernels, polynomials can be chosen, which vanish either in 0 and 1

or in −1 and 0, with suitable coefficients; besides they can be multiplied by other

polynomials to increase the order of regularity. Notice that K+ acts on the right of

t, while K− acts on the left by definition of the convolution.

To write down examples of left one-sided kernels satisfying the above hy-

potheses, with ν = 0 and k = 2, let us take the following µ−dependent polynomi-

als vanishing in 0 and 1:

K−,µ(x) = xµ(1− x)µ (α◦+α1x), x ∈ [0,1]. (22)

By the prescription on left one-sided kernels, the moment of order 0 is 1 and the

moment of order 1 is 0. These two conditions give a system of two equations by

which the coefficients α◦ and α1 are completely determined after fixing µ . Setting
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µ = 0 we obtain the kernel function K−(x) = 2(2−3x); setting µ = 1 we obtain

K−(x) = 12x(1−x)(3−5x), while setting µ = 2 we get K−(x) = 60x2(1−x)2(4−
7x). This last kernel, when derived, can be used to estimate the first derivative

(ν = 1) of the regression curve by taking its derivative and choosing µ = 1 and

k = 3.

The right one-sided kernels can be recovered from the left ones by remarking

that

K
(ν)
+ (x) = (−1)ν K

(ν)
− (−x) (23)

as it follows from the preceding assumptions.

3. THE SEARCH OF DEFLECTION POINTS OF CARDIAC FREQUENCY

AS A FUNCTION OF VELOCITY

The search of the deflection points of cardiac frequency, as the velocity in-

creases, can be typical for many problems. Simulated data are discussed relative

to a typical Conconi’s test.

The athlete, after an usual warming of 15− 30 minutes, has to increase his

speed without stopping. The increase must be gradually carried out, by predeter-

mined fractions: then the achieved velocity must be kept constant during the rest

of the fraction. The measurements are taken in this final part of the fraction.

The regression curve is assumed to be continuous and the change-point has

to be detected as a discontinuity of the first derivative.

By definition the estimator kernel for the first derivative is

ĝ′±(t) =
n

∑
i=1

yi

b2

∫ si

si−1

K′
±(

t −u

b
)du, (24)

By the change of variable v = (t −u)/b, whence du =−b dv, one gets

ĝ′±(t) =
n

∑
i=1

yi

b2

∫ t−si
b

t−si−1
b

(−b) ·K′
±(v)dv =

n

∑
i=1

yi

b

∫ t−si−1
b

t−si
b

K′
±(v)dv. (25)

The left one-sided kernel estimator is calculated as a sum of the products of the

data yi times the integral of the kernel function considered in the interval

[0,1]∩ (
t − si

b
,
t − si−1

b
). (26)

Indeed the left one-sided kernel function has compact support in [0,1]; an analo-

gous subinterval of [−1,0] supports integration of the right one-sided kernel.
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The algorithm makes use of the fact that two intervals [a,b], [c,d] have non-

empty intersection if and only if a ≤ d and b ≥ c. The derivatives of the kernels

K−(x) = 60x2(1− x)2(4−7x), K+(x) = K−(−x), µ = 1 (27)

H−(x) = 280x3(1− x)3(5−9x), H+(x) = H−(−x), µ = 2 (28)

are chosen as kernel functions for ĝ′±.
Now 100 values of velocities are taken from 9 to 20, and corresponding val-

ues of cardiac frequency (about from 148 to 188) are normally generated with

different variances around the curve

y =

{
86+6.5t, 9 ≤ t ≤ 14.29

27.519+17.067t −0.453t2, 14.29 ≤ t ≤ 20.
(29)

One of our aims is to find a suitable range of values of the bandwdith b:

some values of b are employed, and the validation is provided by the simulations

for which the resulting estimate τ̂ is near enough to 14.29.

The change point is detected as a minimum of the jump size ∆̂′(x) = ĝ′+(x)−
ĝ′−(x), since the "defaillance" of cardiac frequency implies g′+(x) < g′−(x).

In figures 1, 2, 3 an example of generated data (with standard deviation

σ = 0.4) and the graphs of ∆̂′(x) (coming from kernel estimators (27) and (28),

respectively, with bandwidth b= 2) appear. The resulting estimate was τ̂ = 14.44.

An asymptotic (1−α)-confidence interval for τ (Müller, 1992, 3.11 at page

744) is provided by

τ = τ̂ ±b

[
Φ−1(1− α

2
)(µ +ν)!

σ̂

|∆̂(ν)(τ̂)|K(µ+ν)
− (0)

] 1
µ+ν

×
[

2

∫
K
(ν+1)
− (v)2dv/(nb2ν+1)

] 1
2µ+2ν

(30)

Here

∆̂(ν)(τ̂) = ĝ
(ν)
+ (τ̂)− ĝ

(ν)
− (τ̂) (31)

is the jump size in the ν−th derivative, while an estimate of the variance σ 2 can

be given as

σ̂ 2 =
1

n−1

n−1

∑
i=1

(− 1√
2

yi +
1√
2

yi+1)
2 (32)
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This last expression is a particular case of formula (3.10) in the above theory

(Müller, 1992, p. 744),

σ̂ 2 =
1

n− (m1 +m2)

n−m2

∑
i=m1+1

(
m2

∑
j=−m1

ω jy j+i

)2

,

∑ω j = 0, ∑ω2
j = 1, m1,m2 ≥ 0, m1 +m2 ≥ 1.

We have chosen m1 = 0,m2 = 1 and the weights ω j so that ω0,1 =∓ 1√
2
.

By computing in the above simulations, we found:

τ̂ = 14.44, ∆̂ =−3.73, σ̂ = 0.57,

∫
K

′′
−(v)

2 dv = 25920, K
µ+ν
− (0) = K

′′
−(0) = 480 (µ = 1,ν = 1, b = 2)

and a 95% confidence interval is [τ1,τ2] = [12.44, 16.44].

By varying the bandwidth b, in similar simulations with σ = 0.4, the resulting

estimates τ̂ , ∆̂ were:

b τ̂ ∆̂ σ̂

0.5 13.66 -16.49 0.57

1 15.77 -5.16 0.54

1.3 14.44 -3.67 0.56

1.5 14.33 -4.00 0.56

2 14.88 -2.66 0.55

2.5 14.77 -2.81 0.58

2.6 14.44 -4.69 0.53

3 10.44 -95.11 0.55

3.5 18.44 -154.30 0.51

Therefore, if σ ≤ 0.4, the acceptable bandwidths are found from about 1.3 to

2.6.

Increasing the standard deviation σ in simulations the estimates can go away

from the expected τ = 14.29:
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Figure 1: Simulation of line - parabola transition, with change point t � 14.29

b σ τ̂ ∆̂ σ̂

2 0.5 14.55 -4.60 0.70

2 1 17.00 -3.94 0.97

2 2 14.22 -7.23 2.18

2 3 17.11 -14.49 2.89

2.5 4 16.44 -15.45 4.16

2.5 5 16.77 -9.55 5.47

2.5 6 16.22 -11.01 6.50

As expected, a limitation of the method is the variability of the assigned data.

Figure 1: Simulation of line - parabola transition, with change point t ����� 14.29
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Figure 2: ∆̂′ with K−(x) = 60x2(1− x)2(4− 7x), µ = 1
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Figure 3: ∆̂′ with K−(x) = 280x3(1− x)3(5− 9x), µ = 2.Figure 3: ˆ ′∆  with K_(x) = 280x3(1 – x)3(5 – 9x), µ= 2.

Figure 2: ˆ ′∆ with K_(x) = 60x2(1 –  x)2(4 – 7x), µ= 1.
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Figure 4: Simulation of transition from convex to concave parabola with disconti-

nuity point t � 327

Another transition which can appear in these problems is from convex to

concave parabola, with evidence of discontinuity of g(t) itself, rather than of g′(t)
(it can be verified when a parabolic regression restricted to the aerobic regime

turns out to give better p-values than a simple line regression).

We consider as t an indirect measure of velocity, namely in watt, and a ran-

dom perturbation of the curve

y =

{
114.4−0.191t +0.00088t2, 122 ≤ t ≤ 327

−109.3+1.121t −0.00108t2, 328 ≤ t ≤ 518
(33)

with independent normal errors. An example of generated data is in Fig. 4. The

search of a discontinuity point is done with kernels

K−(x)= 12x(1−x)(3−5x), 0< x< 1; K+(x)=−12x(1+x)(3+5x), −1< x< 0.

For σ = 2, σ = 3, acceptable estimates of the transition point are obtained

with bandwidth about from 25 to 50:

Figure 4: Simulation of transition from convex to concave parabola with discontinuity
point t ����� 327
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b τ̂ ∆̂

20 330 -0.573

30 327 -0.263

40 327 - 0.213

50 327 -0.175

55 327 - 0.166

60 173 -0.190

while further values of standard deviation in simulation make the estimates

less satisfactory (as expected): for example, when σ = 4, a result is τ̂ = 291,

∆̂ =−0.294.
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