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1. INTRODUCTION

Correspondence analysis (CA), developed by Benzécri (1973) since 1960s, as a

statistical method for different kinds of data sets, in particular for contingency

tables, is embedded both in theory and in practice. The theory is based on the chi-

square distance between the profiles; parallel to this beautiful theory, the practice

is entrenched in the joint interpretation of the graphical displays based on the

Euclidean geometry. Seeing this extreme fondness of the use and interpretation

of the maps by the users of CA, Nishisato (1998) suggested the replacement of

the adage “seeing is believing“ with “graphing is believing“ and stressed the im-

portance of interpretable graphs. Additionally, we recall the often cited quip “a

picture is worth a thousand words“, and via geometric interpretation of maps CA

offers much to the analysis of complex multivariate data sets. So the philosophi-

cal question asked by Schlick (2000, part 5) "Theory and Observation: Is seeing
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believing ?" is quite relevant here in the context of data analysis by CA.

It is well known that, CA is very sensitive to some particularities of a data

set; further, how to identify and handle these is an open unresolved problem.

Here, we enumerate three under the umbrella of sparse contingency tables: rare

observations, zero-block structure and relatively high-valued cells. Rao (1995),

among others, stressed the influence of rare observations (rows or columns that

have relatively small marginal weights compared to others) and proposed an alter-

native to CA based on Hellinger distance (a square-root transformation of counts).

Greenacre (2013) refuted Rao’s assertion and argued that rare observations do not

have an exaggerated influence in CA. Earlier Nowak and Bar-Hen (2005) devel-

oped a criterion based on the influence function to identify influential rare obser-

vations; and they arrived at the same conclusion as Greenacre in their analysis

of a 207×15 abundance data in ecology; however they observed that "influential

species are rare species that are concentrated in few plots". A similar observa-

tion is found in Greenacre (2013) "there is one exceptional situation where rare

species would have a strong role in the solution, namely when a species is ob-

served in a single sampling site and no or very few other species are observed

there". We describe this particular situation as the existence of a large zero-block

structure. Often few relatively high-valued cells, including outlier counts, have

detrimental effect on the CA outputs by emphasizing some aspects of the data,

even though apparently the interpretation of the CA maps seems meaningful to

the researchers. Our main aim in this paper is to highlight the above mentioned

three points by comparing the maps obtained by CA with the maps obtained by

taxicab correspondence analysis (TCA), where TCA is a L1 variant of CA; and to

explore under what conditions the CA and TCA maps produce similar, somewhat

similar or dissimilar maps. Our main conclusion is that: First, CA and TCA maps

enrich each other; second, for sparse contingency tables, there is a positive prob-

ability that CA and TCA maps are partially similar or dissimalar. To do this we

organize the paper in six sections.

In Section 2, we attempt to quantify the notion of sparsity in contingency

tables by a 7-number summary based on the minimal size of an equivalent con-

tingency table, where the invariance property of CA and TCA is used to construct

the equivalence class of contingency tables. In Section 3, we present a brief math-

ematical comparison of CA and TCA; in Section 4 we present an empirical com-

parison using ten data sets; in Section 5 we consider sparsest contingency tables;

and we conclude in Section 6.

The theory of CA can be found, among others, in Benzécri (1973, 1992),
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Greenacre (1984), Gifi (1990), Le Roux and Rouanet (2004), Murtagh (2005), and

Nishisato (2007); the recent book, authored by Beh and Lombardi (2014), presents

a panoramic review of CA and related methods. Since 2006, Choulakian and

coauthors have studied mathematical properties of TCA applied to many kinds of

non-negative data; in particular, TCA of contingency tables and their comparison

with CA are studied in the following papers: Choulakian (2006), Choulakian et

al. (2006), Choulakian (2008), and Choulakian, Simonetti and Gia (2014).

2. 7-NUMBER SUMMARY OF SPARSITY IN CONTINGENCY TABLES

Let N = (ni j) be a contingency table cross-classifying two nominal variables with

I rows and J columns, where for i = 1, ..., I and j = 1, ...,J, ni j represents the

frequency of statistical units having the ith category of the row variable and the

jth category of the column variable. Thus, n=∑I
i=1 ∑J

j=1 ni j represents the sample

size. In the statistical literature, generally we see that the degree of sparsity of N
are based on the following two quantities

ave(N) =
∑I

i=1 ∑J
j=1 ni j

IJ
,

the average value of counts; and

%(0 ∈ N) =
∑I

i=1 ∑J
j=1 1ni j=0

IJ
100,

the percentage value of zero counts, where 1ni j=0 is the indicator function: 1ni j=0 =

1 for ni j = 0 and 1ni j�0 = 0 for ni j ≥ 1.

According to Agresti and Yang (1987), N is sparse if ave(N) is small such

that the chi-squared approximations of the goodness-of-fit statistics are inaccurate.

Radavicius and Samusenko (2012) characterize N as very sparse if the sample size

(n) is less than the number of cells (IJ), that is, ave(N)< 1. Greenacre (2013) uses

%(0 ∈ N) as an index of sparsity.

Another qualitative definition of sparsity is used in the Ph.D thesis of Kraus

(2012), based on Agresti (2002, p.391) "contingency tables having small cell

counts are said to be sparse". A quantification of this definition will be given

in subsection 2.3.

As we stated in the introduction, our concept of sparseness is broader, it also

includes relatively large valued counts; to quantify this aspect of sparseness we

consider the batch of nonzero counts of N, and following Tukey (1977, ch.2 or



156 Choulakian, V.

p.80), we summarize them by the 5-number summary,

MH1 = (min,Q1,Median,Q3,max);

where, min represents the lowest value in the batch of the positive counts, max
the highest value, and, Q1, Median and Q3 are the three quartiles (Q1 and Q3

are the two hinges in Tukey’s terminology). Thus, from the 7-number summary

(ave(X),%(0 ∈ X),MH1), one gets an idea on the degree of sparsity concerning

its different, but complementary, aspects in a contingency table X.

2.1. EQUIVALENCE CLASS OF AN OBSERVED CONTINGENCY TABLE

An important property of CA and TCA is that columns or rows with identical pro-

files (conditional probabilities) receive identical factor scores. The factor scores

are used in the graphical displays. Moreover, merging of identical profiles does

not change the results of the data analysis: This is named the principle of equiv-
alent partitioning by Nishisato (1984); it includes the famous invariance property

named principle of distributional equivalence, on which Benzécri (1973) devel-

oped CA. Formally, Nishisato’s principle of equivalent partitioning is based on

the following

Definition 1: Let N be a contingency table of size I×J, x = (xk) and y = (yk)

are two rows or two columns of N such that they are proportional

x
∑xi

=
y

∑yi
or (∑yi)x = (∑xi)y.

We construct a new contingency table, Nreduced , by replacing the two elements

x and y in N by one element x+y, and keeping all the other columns and rows of

N the same in Nreduced . Then we say that the contingency tables N and Nreduced are

equivalent, and we write N ∼ Nreduced . Thus the equivalence class of contingency

tables of N is given by

Ω(N) ={X : X ∼ N} .
Given that, Ω(N) contains infinite number of contingency tables equivalent to a

given N, we define its representative element by the unique contingency table M
of minimal size; that is, among all elements of Ω(N), M has minimum number

of rows and columns. We can easily deduce the following inequalities: ave(N)≤
ave(M) and max(N)≤ max(M).
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2.2. ARTIFICIAL EXAMPLE AND EXTREME SPARSITY

The following contrived example illustrates the idea. Let

N =




1 2 0 0

2 4 0 0

0 0 1 2

3 6 0 0




be a two-way contingency table of size 4× 4. Its 7-number summary of sparsity

is

(ave(N) = 1.3125, %(0 ∈ N) = 50,MH1 = (1, 1.5, 2, 3.5, 6)).

We note that the first, second and fourth rows of N are proportional to each other,

so they can be lumped together into one row, and we obtain the equivalent contin-

gency table

N1 =

(
6 12 0 0

0 0 1 2

)
of size 2×4; its 7-number summary of sparsity is (2.6250, 50, (1, 1.5, 4, 9, 12)).

Similarly, we see that the third and fourth columns of N1 are proportional, so they

can be added together, and we obtain equivalent contingency table

N2 =

(
6 12 0

0 0 3

)

of size 2× 3. Similarly, we see that the first and second columns of N2 are pro-

portional, so they can be added together, and we obtain the unique representative

equivalent contingency table

M =

(
18 0

0 3

)

of minimal size 2× 2. The four contingency tables N, N1, N2 and M are equiv-

alent, because they belong to Ω(N) : CA and TCA of N, N1, N2 and M produce

identical maps, because they have identical geometries within the mathematical

framework of CA and TCA. However, we have four different 7-number sum-

maries of the sparsity: we consider the one obtained from M the most representa-

tive.

We note that M is a diagonal contingency table and sparsest (most sparse),

based on the following lemma, whose proof is given in the appendix.

Lemma 1: %(0 ∈ M)≤ 100(1− 1
min(I,J) ).
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Definition 2: A contingency table is named sparsest if %(0 ∈ M) = 100(1−
1

min(I,J) ), and extremely sparse if %(0 ∈ M) is very near to 100(1− 1
min(I,J) ).

2.3. EXAMPLES OF SPARSE CONTINGENCY DATA SETS

Table 1 enumerates ten contingency tables and their 7-number summaries calcu-

lated on N and on M. Sections 4 and 5 provide further references to these data

sets. The first data set is not sparse. For the last nine of them, which are considered

to be sparse, we note that:

Q1 ≤ 2 and Median ≤ 5,

which is another quantification of sparsity describing "contingency tables having

small cell counts are said to be sparse". Furthermore, comparison of Q3 and max
values highlights very long tails for sparse contingency tables, which represents

the existence of relatively high-valued counts. Concerning the equivalent tables

N and M, we see noticeable changes in the 7-number summaries for the two data

sets 6 (Barents) and 10 (Synoptic Gospels): these two contingency tables N and

M are extremely tall: the number of columns is much smaller than the number

of rows; so the merging of rows essentially happened for rows having very small

marginal counts of 1 or 2. For these two data sets, M can be put in the following

form

M =

(
M1

D

)
,

where D is a square diagonal matrix.

We classify the data sets in Table 1 into three large groups according to our

concept of sparsity:

Non sparse tables: Data set 1 (TV programs) belongs to this group.

Extremely sparse tables: Data set 3 (Texel) belongs to this group. Note that

%(0 ∈ M) = 96.3% is very near to 100(1− 1/220) = 99.5455, the upper bound

provided in Lemma 1.

Sparse tables: the remaining eight data sets belong to this group.

It is interesting to note that for Data set 10 (Synoptic Gospels): The upper

bound in Lemma 1, 100(1−1/7) = 85.7143, is quite near to %(0 ∈ N) = 78.2%,

but quite far from %(0 ∈ M) = 45%. For this reason, we characterized it as sparse

and not extremely sparse.
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3. CORRESPONDENCE ANALYSIS AND TAXICAB CORRESPONDENCE
ANALYSIS: AN OVERVIEW

Let P = N/n = (pi j) be the associated correspondence matrix of N. We define

as usual pi∗ = ∑J
j=1 pi j , p∗ j = ∑I

i=1 pi j, the vector r = (pi∗) ∈ RI, the vector

c = (p∗ j) ∈ RJ, and Dr = Diag(r) the diagonal matrix having diagonal elements

pi∗, and similarly Dc = Diag(c). We suppose that Dr and Dc are positive definite

size ave %(0) MH1 map
similarity

1) TV yes
    programs

N=M 13 × 7 55.81 0% (3 15 40 86 271)

2) Rodents no

N 28 × 9 3.96 66.7% (1 2 5 12.3 78)
M 21 × 9 5.3 58.7% (1 2 4.5 14 78)

3) Texel no

N 285 × 220 0.26 96.6% (1 1 1 4.8 97)
M 266 × 220 0.28 96.3% (1 1 1 7 97)

4) Macro partial

N 189 × 40 6.1 84.8% (1 2 3 14 1848)
M 161 × 40 7.47 81.9% (1 2 3 14 1848)

5) Benthos partial

N=M 92 × 13 8.02 39% (1 1 3 8 992)

6) Barents partial

N 446 × 10 2.91 78.4% (1 1 2 8 798)
M 221 × 10 5.87 67.5% (1 1 3 10 903)

7) Seashore partial

N 126 × 68 0.14 88% (1 1 1 1 5)
M 106 × 65 0.17 86.4% (1 1 1 1 12)

8) Punta no
    Milazzese

N=M 31 × 19 0.83 58.1% (1 1 1 2 12)

9) Iversfjord no

N=M 37 × 14 2.643 60% (1 1 2 6 64)

10) Synoptic no
     Gospels

N 7097 × 7 0.39 78.2% (1 1 1 2 79)
M 796 × 7 3.59 45% (1 1 2 4 2740)

Table 1: 7-number summary of sparsity of ten two-way contingency tables.
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or elementwise

pi j = pi∗p∗ j

[
1+

k

∑
α=1

fα(i)gα( j)/σα

]
, (1)

where fα and gα represent the principal coordinate scores of rows and columns,

and σα is the associated dispersion measure for α = 1, ...,k. Note that in both

methods fα and gα are Dr and Dc centered respectively; that is

f


αDr1I = g



αDc1J

= 0, (2)

where 1I is a column vector of ones of size I.

In CA, fα and gα satisfy

f


αDrfα = g



αDcgα = σ2

α for α = 1, ...,k, (3)

f


αDrfβ = g



αDcgβ = 0 for α � β . (4)

Equation (3) says that the Dr weighted L2 norm of fα is σα ; likewise, equation

(4) says that fα is Dr orthogonal to fβ for α � β . In CA the standard coordinate

scores are fα/σα for column profiles and gα/σα for row profiles.

In TCA, fα and gα satisfy

f


αDrsgn(f)α = g



αDcsgn(gα) = σα for α = 1, ...,k, (5)

f


αDrsgn(fβ ) = g



αDcsgn(g)β = 0 for α > β . (6)

metric matrices of size I × I and J × J, respectively; this means that the diagonal

elements of Dr and Dc are strictly positive. Let k = rank(R0), where

R0 = (P− rc
)

is the residual matrix with respect to the independence model. CA and TCA can

be considered as principal components analysis for categorical data, where P or

R0 is decomposed into a sum of bilinear terms shown in equation (1). Equation

(1) is named the data reconstruction formula, and it is obtained by generalized

singular value decomposition and its taxicab version with respect to the metric

matrices Dr and Dc, see in particular Choulakian, Simonetti and Gia (2014):

P = Dr(1I1


J +

k

∑
α=1

fαg


α/σα)Dc,
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Step 1: we calculate the matrix of Pearson residuals,

S = D−1/2
r (P− rc



)D−1/2

c . (7)

Step 2: we calculate the eigenvectors xα via the eigen-equation,

S



Sxα = σ2
αxα with x



αxα = 1, (8)

where the (i, j)th element of S
S represents a similarity measure between

the two column categories i and j.

Step 3: we calculate fα = σαD−1/2
r xα .

Step 4: we calculate gα via the transition formula (22).

• c) Compared to CA, TCA stays as close as possible to the original data:

It directly acts on the correspondence matrix P or R0 in the largest sense

that the basic taxicab decomposition is independent of the metrics Dr and

Dc: it is simply constructed from a sum of the signed columns or rows

of the residual correspondence matrix, for further details see Choulakian

(2006, 2016); only the relative direction of the rows or columns is taken into

account without calculating a similarity (or dissimilarity) measure between

the rows or columns.

The optimization criterion is based on the famous Grothendieck problem,

see Pisier (2012). The steps for the computation of the principal coordinate

scores fα and gα are done iteratively for α = 1, ...,k :

where sgn(gα) = [sgn(gα(1)), ...,sgn(gα(J)]


, and sgn(gα( j)) = 1 if gα( j) > 0,

sgn(gα( j)) =−1 otherwise. Equation (5) says that the Dr weighted L1 norm of fα
is σα ; likewise, equation (6) says that fα is Dr orthogonal to sgn(fβ ) for α > β .

3.1. REMARKS

• a) CA of P is equivalent to CA of R0, with diagonal weight matrices Dr

and Dc. Analogously, TCA of P is equivalent to TCA of R0, with diagonal

weight matrices Dr and Dc.

• b) In CA, the principal coordinate scores fα and gα are functions of the

eigenvectors of a similarity measure between the rows or columns and more

importantly the similarity measure depends on the chosen metric Dr and Dc.

We describe the computation of fα and gα in four steps:
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• d) An interesting and useful property of the taxicab dispersion measures,

σα for α ≥ 1, is the following result well known in theoretical computer

science, see Khot and Naor (2012):

Lemma 2:

σα =
||Rα−1u||1

||u||∞ for α ≥ 1

= max
u∈{−1,1}J

||Rα−1u||1
= 4 ||Rα−1||cut ,

where the cut norm of the matrix Rα−1 is defined as

||Rα−1||cut = max
S×T

| ∑
(i, j)∈S×T

Rα−1(i, j)| where S ⊆ {1, ..., I}

and T ⊆ {1, ...,J} .

We know that taxicab principal axes have values ±1, that is, uα∈{−1,1}J

and vα∈{−1,1}I
for α ≥ 1. So we can represent uα = uα+ + uα−, and

similarly, vα = vα++vα−, where

uα+ = (1J +uα)/2

uα− = (uα −1J)/2.

Lemma 2 can be named 4-quadrants balancing property, because the taxicab

Step 1: we compute the principal axis

uα = arg max
u∈{−1,1}J

||Rα−1u||1,

where R0 = P− rc

and Rα = P− rc
 −∑α

β=1 Drfβ g

β Dc/σβ for α = 1, ...,k.

Step 2: we compute the principal coordinate scores fα = D−1
r Rα−1uα .

Step 3: we calculate gα via the transition formula (15),

gα = D−1
c R



α−1sgn(fα)

.

Step 4: we update Rα+1 = P− rc
 −∑α+1
β=1

Drfβ g

β Dc/σβ .
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dispersion measure σα for α ≥ 1 is divided into 4 equal parts having the

common value of the cut norm of Rα−1:

σα/4 = v′α+Rα−1uα+

= v′α−Rα−1uα−
= |v′α−Rα−1uα+|
= |v′α+Rα−1uα−|.

As a corollary to this fact, we have: In TCA of P both principal coordinate

scores fα and gα for α = 1, ...,k satisfy the equivariability property, see

Choulakian (2008b). This means that fα and gα are equally balanced in the
sense that

σα

2
= ∑

i∈Iα+

pi∗ fα(i),

= − ∑
i∈Iα−

pi∗ fα(i),

= ∑
j∈Jα+

p∗ jgα( j),

= − ∑
j∈Jα−

p∗ jgα( j), (9)

where Iα+ = {i| fα(i)> 0}, Iα− = {i| fα(i)< 0} , Jα+ = { j|gα( j)> 0} and

Jα− = { j|gα( j)< 0} . This easily follows from the fact that the principal

coordinate scores fα and gα are Dr and Dc centered, they satisfy equation

(2). An informal illustrative interpretation of the equivariability property is

that TCA pulls inside potential influential observations and pushes outside

points around the origin, thus providing a more balanced and robust view

of data.

We note that in CA the principal coordinate scores fα and gα do not satisfy

the equivariability property, because they are unequally balanced in the sense that

A = ∑
i∈Iα+

pi∗ fα(i),

= − ∑
i∈Iα−

pi∗ fα(i),

B = ∑
j∈Jα+

p∗ jgα( j),
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In CA, based on (3), this corresponds to:

Cα(i) = 1000
pi∗ f 2

α(i)
σ2

α
and Cα( j) = 1000

p j∗g2
α( j)

σ2
α

. (10)

In TCA, based on (5), we have the signed contribution

SCα(i) = 1000
pi∗ fα(i)

σα
and SCα( j) = 1000

p j∗gα( j)
σα

. (11)

It is important to note that, in CA,

0 <Cα(point)< 1000; (12)

while in TCA, from (9) we get,

−500 ≤ SCα(point)≤ 500. (13)

• f) In both methods the maps or joint displays are obtained by plotting

(fα , fβ ) and (gα ,gβ ) for α � β . Both CA and TCA have common residual

transition formulas, see Choulakian (2006),

fα(i) = p−1
i∗

J

∑
j=1

Rα−1(i, j)uα( j)) for α = 1, ...,k, (14)

and

gα( j) = p−1
∗ j

I

∑
i=1

Rα−1(i, j)vα(i) for α = 1, ...,k, (15)

where Rα is the residual correspondence matrix, and uα and vα for α =

1, ...,k are the normed principal axes and related to the principal coordinate

scores gα and fα for α = 1, ...,k in the following way. In both methods

= − ∑
j∈Jα−

p∗ jgα( j),

and in general,

A � B;

furthermore, A and B are not related to the dispersion measure σα , because CA

maximizes the variance of the principal coordinate scores.

• e) Given that the approach in CA and TCA is geometric, influence measure

of a point (a column or a row) to the αth factor is provided by the contri-

bution of that point to the dispersion measure of the αth factor in per 1000

units.
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Rα = P− rc

 −

α

∑
β=1

Drfβ g


β Dc/λβ . (16)

In TCA

uα = sgn(gα) and vα = sgn(fα) for α = 1, ...,k, (17)

so equations (14) and (15) become

fα(i) = p−1
i∗

J

∑
j=1

Rα−1(i, j)sgn(gα( j)) for α = 1, ...,k, (18)

and

gα( j) = p−1
∗ j

I

∑
i=1

Rα−1(i, j)sgn( fα(i)) for α = 1, ...,k. (19)

Equations (18) and (19) help us to interpret the joint TCA maps in the fol-

lowing way: fα(i), the coordinate of point i on the αth axis is the signed

centroid of the residual correspondence matrix within the p−1
i∗ constant.

Analogous interpretation applies to gα( j), the coordinate of point j on the

αth axis.

In CA

uα = gα/σα and vα = fα/σα for α = 1, ...,k. (20)

The joint interpretation of column and row categories in the CA map is based on

the well known transition formulas

fα(i) =
J

∑
j=1

Pr( j|i)gα( j)/σα for α = 1, ...,k, (21)

and

gα( j) =
I

∑
i=1

Pr(i| j) fα(i)/σα for α = 1, ...,k, (22)

where Pr( j|i) = pi j/pi∗, the conditional probability of observing j given i. Note

that (21, 22) can be obtained from (14, 15) via (3, 4, 20). In (21), the principal co-

ordinate score fα(i) is the weighted average (centroid) of the principal coordinate

scores gα( j) within the λ−1
α constant. Analogous interpretation applies to gα( j),

the coordinate of point j on the αth axis.
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Table 2: TV progams data

programs excellent verygood good average bad noopinion dontknow

1 9 28 89 124 51 19 71

2 31 87 165 63 24 4 17

3 7 21 65 103 83 8 103

4 3 26 121 142 45 11 43

5 17 40 117 111 83 16 7

6 8 35 115 119 78 6 28

7 4 22 73 56 77 12 147

8 15 44 102 83 32 25 90

9 5 18 63 61 15 9 219

10 8 15 40 37 8 12 271

11 5 16 64 54 15 17 220

12 29 87 140 62 24 9 40

13 12 18 89 95 41 9 127

total 153 457 1243 1110 576 157 1383

C1 24 83 106 45 40 1 700

C2 128 285 63 181 330 2 11

SC1 -28 -96 -165 -137 -73 -2 500

SC2 -82 -235 -173 222 278 -10 0

Figure 1 displays CA and TCA maps, where we see that both maps are similar

and produce the same interpretation. The % of explained variation for CA (resp.

for TCA) of the first two dimensions are 70.7 (resp. 78%) and 21.6 (resp (16.7);

with almost equivalent cumulative value of 92.4% for CA and 94.7 for TCA.

4. DATA ANALYSIS

Here we carry out CA and TCA on three data sets mentioned in Table 1, and

comment on the remaining. The visual comparison of CA and TCA maps shows

that we can have three distinct cases: similar maps, dissimilar maps, and partially

similar maps.

4.1. TV PROGRAMS DATA SET

Table 2 presents a contingency table of size 13× 7 taken from Benzécri (1976),

where a sample of 400 individuals evaluate 13 TV programs on a Likert scale

from 1(excellent) to 5 (bad); also two other categories of response are included

noopinion on the program and dontknow the program. The data set is not sparse.
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The interpretation of the first two dimensions in Figure 1 will be based on two

principles: principle of dichotomy and principle of graduation.

Figure 1: CA and TCA biplots of TV Programs data.
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4.1.1. INTERPRETATION OF THE 1ST AXIS

We note that C1(dontknow) = 700 and SC1(dontknow) = −500 as given at the

bottom of Table 2; so the first axis represents the dichotomy between ignorance

and knowledge: where the response category dontknow opposes to the 5 Likert

response scales; noopinion is near the origin.

4.1.2. INTERPRETATION OF THE 2nd AXIS

The 5 Likert response categories are ordered from excellent to bad.

4.1.3. INTERPRETATION OF THE TV PROGRAMS

Programs 2 and 12 are considered excellent and verygood; programs 10, 11 and 9

are mostly unknown, and so on.
It is important to note that, the response category dontknow is very influential

in both methods CA and TCA, and it reveals a central important feature of the

data: in TCA, the category dontknow contributes only to the first axis, because it

attains the maximum value of its contribution, |SC| = 500, see equation (9); but

this is not the case in CA.

4.2. RODENT SPECIES ABUNDANCE DATA SET

Table 2 displays abundance data (N) of size 28×9 (equivalent to M of size 21×9),

where 9 species of rodents have been counted at each of 28 sites in California.

For the interested reader, we identify the 9 rodents by their scientific names:

rod1=Rt.rattus, rod2=Mus.musculus, rod3=Pm.californicus, rod4=Pm.eremicus,
rod5=Rs.megalotis, rod6=N.fuscipes, rod7 =N.lepida,

rod8=Pg.fallax, and rod9=M.californicus. Genus abbreviations are: Rt (Rat-

tus), Rs (Reithrodontomys), Mus (Mus), Pm (Peromyscus), Pg (Perognathus),

N (Neotoma) and M (Microtus). Rattus and Mus, rodents 1 and 2, are invasive

species, whereas the others are native. This data set is very interesting, because

we see that it has, in particular, three specificities which characterize our concept

of sparsity: rare observations, a zero-block structure and relatively high-valued

cells. It is sparse based on the 7-number summary calculated in Table 1. It was

proposed in 2014 as an exercise in a course on an ecology workshop in UBC in

Canada; the workshop site mentions that the data set is downloaded from the web

site of Quinn and Keough (2002), and it can be found at

https://www.zoology.ubc.ca/~bio501/R/workshops/workshops-

multivariate-methods/
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Table 3: Rodent species abundance data.

Sites rod1 rod2 rod3 rod4 rod5 rod6 rod7 rod8 rod9

1 13 3 1 1 2

2 1 57 65 9 16 8 2 3

3 4 36 2 9

4 4 53 1 5 30 18 3

5 2 63 21 11 16

6 1 48 35 12 8 12 2 2

7 11

8 16

9 3 8

10 1 2

11 9

12 3 1 5 16 7

13 4 39 4 12

14 1 3

15 11

16 4

17 3

18 2 78 10 14 4

19 1

20 3 27 1

21 2 1

22 3

23 2 8 2

24 1

25 5

26 22 11 2

27 29 10 9 1

28 10 1 1

total 14 107 467 125 71 152 20 38 8

σα
TCA 0.478 0.422 0.347 0.138 0.120 0.091 0.061 0.010

σα
CA 0.864 0.678 0.536 0.391 0.189 0.157 0.107 0.045

C1 127 750 59 29 9 15 5 4 2

C2 854 140 3 0 0 2 0 1 0

SC1 -23 -196 298 -221 22 135 -51 44 -8

SC2 -26 -238 202 224 32 -139 42 -95 -1
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The instructor of the course suggested the analysis of this data set by CA in

two rounds:

In round 1 the invasive species dominate, see the CA map in Figure 2. This

fact is confirmed by looking at the contibutions in Table 3, where we find C1(rod2)=

750, so the first axis in the CA map is dominated by rodent 2; C2(rod1) = 854, so

the second axis is dominated by rodent 1. The highlighted subset of sites, 7-11, 14-

17, 21-22, 24-25, which are completely associated only with the invasive rodents

1 and 2, characterizes the CA solution; their total weight is 84/1002 = 8.38%.

The minimal matrix M has a zero-block structure and it can be reexpressed as

M =

(
M1 M2

M3 0

)
,

where

M3 =




0 59

3 8

1 2

1 3

4 0

2 1



,

and the submatrix ( M3 0 ) represents the 13 highlighted sites. We conclude

that the combination of the high count cell 59 (representing 7 rare sites), the last

five rows in M3 (representing 6 rare sites), and the large zero-block in M, created

this particular CA solution.

In round 2 the instructor suggested eliminating rodents 1 and 2 and their

associated sites, and carrying out a second application of CA on the reduced data

set representing only the native species (the CA map is not shown).

Figure 2 displays the principal maps produced by CA and TCA, where the

two invasive species and their associated sites are fenced by linear segments: they

are completely different. It is evident that for this data the TCA map is much
more informative than the corresponding CA map; further, one TCA map is as

informative as two CA maps obtained from the two rounds.

4.2.1. INTERPRETATION OF THE TCA MAP

Let us interpret the TCA biplot, the lower diagram in Figure 2. We note that

the two invasive species are grouped and found in the first quadrant of the TCA

map; further, they are associated with the 13 highlighted subset of sites that we

enumerated above. The contibutions to dimensions 1 and 2 of the rodents, SC1
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Figure 2: CA and TCA biplots of Rodents data.

and SC2 displayed in Table 2, show that the TCA map is dominated by the four

most frequent species: rodents 2, 6, 3 and 4; and each of them occupy a quadrant

in the TCA map.

Let us interpret the most frequent ( f req) species rodent 3 ( f req = 467 out of

1002): it dominates the third quadrant, and it is associated with site3 ( f req = 36),
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4.3. MACRO ABUNDANCE DATA SET

This macroinvertebrate sparse abundance data set of size 197×40 was also con-

sidered by Greenacre (2013). Figures 3 and 4 display the CA and TCA maps: The

first dimension has almost the same separation of the 40 sites, so the same inter-

pretation; while the second dimension seems somewhat different. For this reason

we labeled the map similarity partial in Table 1.

4.4. REMAINING DATA SETS

Here, we just give references for the remaining data sets listed in Table 1.

The five ecology abundance data sets numbered 3 to 7 are available in Greena-

cre (2013) and he discussed them in his essay.

Mallet-Gauthier and Choulakian (2015) analyse Punta Milazesse and Iverjs-
ford abundance data in archeology; they reproduce the data sets, provide CA and

TCA maps and their interpretations.

site5 ( f req = 63), site13 ( f req = 39), site18 ( f req = 78), site27 ( f req = 29) and

site28 ( f req = 10). Rod3 is also associated with rod5, their positions are quite

near on Figure 2; looking at the entries in the column of rod5, we see that its high

frequency sites are site27 ( f req = 10), site18 ( f req = 10), site6 ( f req = 12), site5

( f req = 11); further these high frequency sites 27, 18, 6 and 5 also characterize

rod3. We also note that site6 is associated with both species rod3 ( f req = 48)

and rod4 ( f req = 35), and its position is in between rod3 and rod4; however it is

found in quadrant 3, because (35/125)> 48/467.

4.2.2. COMPARISON

By comparing the first two principal dimensions in CA and TCA, we note the

following two facts:

a) Rodent 2, with nonnegligeable weight (around 10%), has a very high

influence on the first principal axis in CA (C1(rod2) = 750); but it distributes

its influence onto the first two principal axes in TCA (SC1(rod2) = −196 and

SC2(rod2) =−238).

b) Rodent 1 is a rare influential point in CA (weight = 1.4% and C2(rod1) =

854); but is no more influential in TCA (SC1(rod1)=−23 and SC2(rod1)=−26).

We conclude that in Figure 2, the CA map emphasized some particular as-

pects of the data set; while the TCA map revealed the central abundances in Table

2.
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Figure 4: TCA map of Macro data.

Figure 3: CA map of Macro data.

Choulakian et al. (2006) is the reference for the Synoptic Gospels textual

count data; they provide CA and TCA maps and discuss their stability.
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5. SPARSEST CONTINGENCY TABLES

Sparsest contingency tables are diagonal contingency tables, as we defined in sec-

tion 2. Here, we show that CA and TCA results are completely different.

5.1. CA OF SPARSEST CONTINGENCY TABLES

Let N be a diagonal contingency table of size I, then it is well known, see for

instance Benzécri (1973, p. 188) that CA of N produces (I − 1) dispersion mea-

sures of 1; that is, σCA
α = 1 for α = 1, ..., I −1. So, CA shows that N is composed

of I diagonal blocks. A similar result is known in spectral clustering as Fiedler’s

theorem, see Choulakian and de Tibeiro (2013).

5.2. TCA OF SPARSEST CONTINGENCY TABLES

Let PN = diag(p1, ..., pI) be the correspondence matrix of a diagonal contingency

table N. Then we have the following easily proven result:

Corollary to Lemma 2: σTCA
1 = 1 if and only if there is a subset S⊂{1, ..., I}

such that ∑i∈S pi = 0.5.

proof: By Lemma 2,

σTCA
1 = 4 v′1+R0u1+

= 4 u′
1+R0u1+, for R0 is symmetric

= 4 ∑
i∈S

pi(1−∑
i∈S

pi),

where S = {i : u1+(i) = 1 for 1, ..., I}, and the required result follows.

5.3. EXAMPLES

We present three exemples, two contrived and one real.

5.3.1. EXAMPLE 1

Let N = Diag(1, 2, 3, 4, 6); then CA produces identical singular values σCA
1 =

σCA
2 = σCA

3 = σCA
4 = 1; while TCA produces σTCA

1 = 1 for 2+6 = 1+3+4, and

the remaining dispersion measures are

σTCA
α = 0:875; 0:85714  and  0.18750.
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5.3.2. EXAMPLE 2

Let N = Diag(1, 2, 3, 4, 5); then CA produces σCA
1 = σCA

2 = σCA
3 = σCA

4 =

1; while TCA produces dispersion measures

σTCA
α = 0.99556, 0.95714, 0.95522 and 0.17778.

5.3.3. TEXEL ABUNDANCE DATA SET

Greenacre (2013) described this data set of size 285×220 "as large and very

sparse table of vegetation abundances on a coastal sand dune area on the island

of Texel, the Netherlands". CA is of no help for the analysis of this table, be-

cause according to Greenacre CA needs as much as 71 dimensions. This is ev-

ident by looking at the sequence of CA singular values: The first five singular

values are: σCA
α = 1, 0.9932, 0.9908, 0.9798 and 0.9761; σCA

α = 1 means that

by permuting rows and columns of the data set, the data can be represented in

two diagonal blocks. The corresponding TCA dispersion measures are: σTCA
α =

0.8026, 0.7768, 0.7331, 0.7106 and 0.7012. Figures 5 and 6 display the CA and

TCA maps, which are completely different. We leave the interpretation of the

TCA map, if there is any, to the ecologists.

Figure 5: CA map of Texel data.
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6. CONCLUSION

The fundamental aim of CA and TCA is to produce interpretable maps that reflect

central contents in a data set. In this paper, first we provided a 7-number quantifi-

cation of sparsity; then we showed that for sparse contingency tables CA and TCA

maps can differ with positive probability, because a map produced by CA or TCA

is dependent on the underlying geometry, Euclidean or Taxicab. Based on our

experience, we suggest the analysis of a data set by both methods CA and TCA:

Like a cubist painting where an object is painted from different angles, sometimes

the views are similar, and at other times dissimilar or partially similar.
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Figure 6: TCA map of Texel data.
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APPENDIX

Lemma 1: %(0 ∈ N)≤ 100(1− 1
min(I,J) ).

The proof is very easy by considering 2 distinct cases of data sets, square

(I = J) and rectangular (J > I).
Case 1: If M is diagonal and has exactly I nonzero cells, then by permuting

some rows and columns, it can be rearranged into a diagonal contingency table;

thus

%(0 ∈ M) = 100(I2 − I)/I2

= 100(1−1/I),

which is the upper bound. If M is a square contingency table but not diagonal, by

permuting some rows and columns, it can be rearranged into a square contingency

table with all diagonal cells nonzero plus some, say, α number of nondiagonal

nonzero cells. Then it is evident that

%(0 ∈ M) = 100(I2 − I −α)/I2

≤ 100(1−1/I).

Case 2: M is rectangular and (J > I). Then M = (M1|M2), where M1 is

square with nonzero diagonal elements of size I × I and has α number of nondi-

agonal nonzero cells ; M2 is rectangular of size I× (J− I), such that each column

of M2 has exactly βi nonzero cells for i = 1, ...,(J− I) and 2 ≤ βi ≤ I. Then

%(0 ∈ M) =
100

[
(IJ− I −α −∑J−I

i=1 βi)
]

IJ
≤ 100(1−1/I),

because ∑J−I
i=1 βi ≥ 2(J− I).
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