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Abstract: In the era of data deluge, a major challenge is to handle large amounts of data
which are produced at a high rate and are characterized by association structures changing
over time. As modern applications become increasingly scalable, efficient approaches are
needed for dealing with high-dimensional categorical data. Multiple Correspondence
Analysis (MCA) is a popular method for reducing the dimensionality of categorical data
while preserving the most essential information. MCA is typically implemented via the
eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of a suitably
transformed matrix. Because of the high computational and memory requirements of
ordinary EVD and SVD, MCA is essentially unfeasible with massive data sets or data
streams that change rapidly and have to be processed on the fly. We distinguish two main
families of methods that can be efficiently used to incrementally compute the dominant
eigenvalues and eigenvectors of a covariance matrix, i) stochastic approximation and ii)
heuristic incremental EVD/SVD. A general algorithmic framework is presented to embed
these methods in the MCA context and provide incremental dimension reduction of
categorical data. The methods are compared on artificial data, in terms of the similarity
between ordinary and incremental MCA configurations. Results do not clearly support the
superiority of one method over another. However, methods that allow for block-based
updates outperform vector-based approaches. The method of choice may be decided on the
basis of the most desirable balance of speed and accuracy.

Keywords:  Categorical data streams, Dimensionality reduction, Stochastic approximation,
Incremental SVD.

1. INTRODUCTION

Multiple Correspondence Analysis (MCA) is a well-established method for in-
vestigating the relationships between more than two categorical variables. Similar
to Principal Component Analysis (PCA), MCA aims to identify a reduced set of
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synthetic dimensions maximizing the explained variability of the categorical data

set in question, see e.g. Greenacre (2007). More specifically, MCA leads to ob-

tain a simplified low-dimensional representation of variable associations among

groups of categorical variables. The first two or three principal components re-

sulting from MCA are usually displayed as axes of a two or three-dimensional

scatterplot, representing units and/or variable categories as points. The classic

application of MCA is on the analysis of survey data, and it has been profitably

used in fields ranging from marketing to psychology, to social and environmental

sciences.

Recently new areas of application emerged, that usually involve large/massive

amounts of categorical data. Some of the examples that can be given in this con-

text are the continuous monitoring of typical product purchase combinations in

market basket data, visualization of web-page visiting patterns via web-log anal-

ysis, tracking patient symptoms and behaviors over time, and monitoring of word

associations that are present in data pulled on-the-fly from social networking sites.

In all of these examples there is a high rate of data accumulation coupled with con-

stant changes in data characteristics. Such type of data is often referred to as data

streams or data flows. Data streams are usually large in volume, unbounded in

size, dynamically changing and require fast response time and efficient memory

use. In fact, when it comes to analyze very large data sets, or even data streams,

the applicability of ordinary MCA is limited and requires a different approach.

Such limitations depend on the eigenvalue decomposition (EVD) and singular

value decomposition (SVD), as the MCA solution is obtained by performing one

of such decompositions to a suitably transformed data matrix. In particular, the

application of ordinary EVD and SVD to large and high-dimensional data is in-

feasible because of the high computational and memory requirements; in addition

EVD/SVD, and hence MCA, are unsuitable for data flows, i.e., when new data ar-

rive, one needs to re-run the method with the original data augmented by the new

data and the whole data structures being decomposed have to be kept in memory.

A popular approach to overcome the EVD and SVD-related limitations is

through incremental updates of existing EVD or SVD solutions according to new

data. In that case, the full data set may not be available in advance, as in data

streams. The solution obtained from a starting data point or data block is in-

crementally updated each time new data comes in. A recent study by Cardot

and Degras (2017) reviewed a series of incremental eigenvalue decomposition ap-

proaches, namely, perturbation techniques, stochastic approximation and heuristic

EVD/SVD. By exploiting these methods, the authors defined several incremental
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PCA algorithms and compared their efficiency in terms of computational time and

statistical accuracy. Their experiments indicated that perturbation techniques are

relatively slow and require computing all eigenelements of the covariance ma-

trix at each update; this makes their application prohibitive when dimensionality

is high. Stochastic approximation methods provide almost sure convergence and

have the highest computational speed, but they can generally process only one

vector (observation) at a time. Finally, heuristic EVD/SVD approaches are less

effficient in terms of speed but highly accurate; their asymptotic convergence has

yet to be established.

Since MCA can be considered as a particular case of PCA, the aforemen-

tioned techniques can be interchangeably used to provide incremental MCA al-

gorithms, i.e. sequential updates of existing MCA solutions. In contrast to incre-

mental PCA, incremental MCA additionally involves the approximation of the

column margins of the full indicator matrix, which, in online settings, is not

available in advance. In that sense, an incremental MCA solution will always

be approximate (Iodice D’Enza and Markos, 2015). Early work on this topic has

been carried out by Benzécri (1969), who proposed a stochastic approximation

algorithm for determining the largest eigenvalues of the expectation of a random

matrix. Lebart (1974) provided a numerical proof of the convergence of Bénze-

cri’s algorithm and indicated its potential in the case of sparse matrices, as those

involved in MCA. Recently, Iodice D’Enza and Markos (2015) and Markos and

Iodice D’Enza (2016) embedded an incremental SVD algorithm, emanating from

the computer science literature, in the context of MCA and a related version of

generalized canonical correlation analysis, and discussed its accuracy and conver-

gence properties. However, a comparison of different methods that could lead

to incremental MCA approaches is still missing. In this work we distinguish

two main families of methods suitable for low-dimensional or low-rank incre-

mental eigen-decomposition: stochastic approximation and heuristic incremental

EVD/SVD. A general algorithmic framework is introduced to embed these meth-

ods in the MCA context and provide incremental updates of the solution. A com-

parison of competing methods on artificial data provides guidance on selecting a

method in practice.

The paper is organized as follows: Section 2 presents PCA and MCA as ma-

trix decomposition techniques. Section 3 briefly presents the most representative

methods of stochastic approximation and heuristic incremental EVD/SVD. Based

on these methods, a general framework for incrementally computing the MCA so-

lution is introduced in Section 4. In Section 5, we present experimental results on
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simulated data to investigate the accuracy of each method with regard to ordinary

MCA. Section 6 gives conclusions and directions for future work.

2. DIMENSION REDUCTION METHODS AS A MATRIX DECOMPOSI-
TION

This section provides a brief introduction to PCA and MCA from a matrix de-

composition perspective. Let X be a n×Q data matrix, where n is the number

of observations and Q is the number of quantitative attributes. For the sake of

simplicity, we consider the Q attributes to be equally scaled. Then the PCA of X
amounts the SVD of the following matrix

SPCA = n−1/2
(
X−n−111TX

)
Q−1/2, (1)

where 1 is an n-dimensional vector of 1. The decomposition is SPCA = UWVT,

where U is a n×Q orthonormal matrix with left singular vectors on columns and

W is a diagonal matrix containing the Q singular values, V is a Q×Q matrix of

right singular vectors. The jth singular value corresponds to the standard deviation

of data along the direction of jth singular vector, j = 1, . . . ,Q. Let Uk and Vk be

the first k columns of U and V and let Wk the matrix of the first k singular values,

then UkWkVT
k is the rank k matrix that approximates SPCA in the least-squares

sense. The principal coordinates for rows and columns are F = n1/2UkWk and

G = Q1/2VkWk, respectively.

We define MCA in a very similar way: let Z be a n×Q binary matrix, where

n is the number of observations and Q the total number of categories that charac-

terize q categorical variables. The general element is zi j = 1 if the ith observation

is characterized by the jth category, zi j = 0 otherwise; let P = 1
n×q Z be the corre-

spondence matrix, where n×q is the grand total of Z. The core step of MCA is the

matrix decomposition of the standardized residual matrix SZ, defined as follows

SZ = D−1/2
r

(
P− rcT

)
D−1/2

c , (2)

where r and c are the row and column margins of P, respectively; Dr and Dc are

diagonal matrices with values in r and c. Consequently, the analogy with PCA is

very close. As for PCA, MCA lies in the SVD of SMCA =UWVT, and the principal

coordinates on the k-dimensional space are F = D−1/2
r UkWk for the observations,

and G = D−1/2
c VkWk for the attributes. Note that the MCA solution can be also

obtained via the EVD of the standardized residuals of the Burt matrix B = ZTZ,

with SB = D−1/2
c

(
P− ccT

)
D−1/2

c .
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In this section we briefly present two main families of methods for incrementally

computing the dominant eigenvalues and eigenvectors of a covariance matrix. The

aim is to compute the principal eigenvector ‘on the fly’, without explicitly com-

puting and storing the empirical covariance matrix.

3.1. STOCHASTIC APPROXIMATION

Stochastic approximation methods can be used to update the PCA solution in-

crementally by processing observations one-by-one. Benzécri (1969) and Kra-

sulina (1970) have proposed independently stochastic approximation algorithms

for determining the largest eigenvalues of the expectation of a random matrix.

This method was extended by Oja and Karhunen (1985) and Oja (1992) with

new proofs and developments, such as the Stochastic Gradient Ascent and Sub-

space Network Learning. Sanger (1989) and Weng et al. (2003) proposed similar

approaches, Generalized Hebbian Algorithm and Candid Covariance-free Incre-

mental PCA, respectively. More recently, Mitliagkas et al. (2013) introduced a

block-wise stochastic variant of the classical power-method.

Stochastic Gradient Ascent - SGA (Oja, 1992). For a new random vector xn+1, the

matrix Un of orthonormal vectors is updated as follows:

Ũn+1 = Un+γn(xn+1−µn+1)(xn+1−µn+1)TUn

Un+1 = Orth(Ũn+1),

3. MAIN APPROACHES TO LOW-RANK INCREMENTAL EIGEN-
DECOMPOSITION

where Orth() is an orthonormalization step, e.g., using the Gram-Schmidt pro-

cedure. Notice that a tuning or gain parameter, γn, is involved which is often

selected by trial-and-error.

Subspace Network Learning - SNL (Oja, 1992) is similar to SGA, where the or-

thonormalization step consists in multiplying Ũn+1 by (ŨT
n+1

Ũ−1/2
n+1

).

Generalized Hebbian Algorithm - GHA (Sanger, 1989). In this approach, the

update step is given by

u j,n+1 = u j,n+γnφ j,n
[
(xn+1−µn+1)−φ j,nu j,n−Σ j−1

i=1
φi,nui,n

]
,

where φ j,n = (xn+1−µn+1)Tu j,n.
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The asymptotic convergence of SGA, SNL and GHA is guaranteed and they are

very efficient in terms of computational speed (Cardot and Degras, 2017). How-

ever, they only allow for vector updates, i.e., one data point at a time, and also

require the choice of the turning parameter γn. No universally good values ex-

ist, but a usual choice is γn = cn−α with α ∈ (1/2,1) and c ∈ (0,0.8) (Cardot and

Degras, 2017).

Candid Covariance-free Incremental PCA - CCI (Weng et al., 2003). CCI pro-

duces a sequence of stochastic approximations to the eigenvectors of X and then

averages them. No tuning parameteters are required. Let u be an eigenvector of

the covariance matrix with unit norm and let λ be the associated eigenvalue. As-

sume that estimates v0, ...,vn−1 of v = λu have been constructed in previous steps.

Then vn+1 is obtained by:

vn+1 =
n

n+1
vn+

1

n+1
xn+1xT

n+1

vn

‖ vn ‖ .

The normalized eigenvector u and eigenvalue λ are estimated by un = vn/ ‖ vn ‖
and λ = ‖ vn ‖.
Block-wise Stochastic Power Method - BSP (Mitliagkas et al., 2013). This is a

block-wise stochastic variant of the classical power-method with a variance re-

duction step. For each incoming block of size r, the empirical covariance matrix

is multiplied by the matrix of orthonormal vectors Un, followed by an orthonor-

malization step:

Sn+1 =
1

r
xnxT

nUn

Un+1 = Orth(Sn+1)

The optimal block size is r ≈ log(Q)/n (Mitliagkas et al., 2013).

3.2. HEURISTIC INCREMENTAL EVD/SVD

Heuristic approaches are based on the relationship between the SVD and the QR

decomposition of a matrix (Arora et al., 2012; Levy and Lindenbaum, 2000; Ross

et al., 2008). They allow for both vector- and block-based updates. Although they

lead to highly accurate solutions, they are less efficient in terms of computational

time and no theoretical guarantees exist for their performance (Cardot and De-

gras, 2017). This section describes two well-known approaches, mostly in the CS

literature.

.
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(Block-wise) Incremental PCA - (B)IPCA (Arora et al., 2012). The centered vec-

tor x̃n+1 = xn+1−µn is decomposed as x̃n+1 = Uncn+1+ x̃⊥n+1
, where cn+1 = UT

n x̃n+1

are the coordinates of xn+1 in the k-dimensional space spanned by Un and x̃⊥n+1
is

the projection of x̃n+1 onto the orthogonal space of Un.

Obtain the EVD of Qn+1 = Vn+1Wn+1VT
n+1

where

Qn+1 =
n

(n+1)2

(
(n+1)Dn+ cn+1cT

n+1
‖ x̃⊥n+1

‖ cn+1

‖ x̃⊥n+1
‖ cT

n+1
‖ x̃⊥n+1

‖2
)

and Un+1 =

(
Un

x⊥n+1

‖x⊥n+1
‖
)
Vn+1 and Dn+1 =Wn+1.

An extension of this method to block-wise updates is straightforward and is de-

scribed in Levy and Lindenbaum (2000).

Block-wise Incremental SVD with mean update - BISVD (Ross et al., 2008). This

is an extension of the previous method to account for the data mean. Given the

SVD of X̃ = X− 1µT
x = UxWxVT

x of a starting data block X, as well as the mean

vector µy of an incoming data block Y, the aim is to compute the SVD of

[
X̃
Ỹ

]
.

• Compute the QR-decomposition of H = Ŷ−LVT
x and K =

[
Wx 0

L Q

]
,

where L = ŶVx.

• Obtain the SVD of K = ÛŴV̂.

• Finally Uxy =

[
Ux 0

0 I

]
Û, Wxy =W and Vxy =

[
Vx Q

]
V̂.

• Update nx = nx+ny and µx =
nxµx+nyµy

nxy
.

Note that the time required to compute the SVD of K, which is approximately of

size ny× k, does not depend on nx, the number of units in X. BISVD has been re-

vised and embedded in the context of MCA by Iodice D’Enza and Markos (2015).

All methods described above are implemented in the R package onlinePCA

(Cardot and Degras, 2016), with the exception of BISVD, which is implemented

in the R package idm (Iodice D’Enza et al., 2017).

4. AN INCREMENTAL MCA FRAMEWORK

In order to adapt the incremental eigen-decomposition methods of the previous

section in the context of MCA, we can express the covariance matrix involved in
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the PCA computation

1

n

(
X−1µT

)T (
X−1µT

)
= UWUT, (3)

in terms of the indicator matrix Z and the Burt matrix B or, in other words, we

can define the ‘qualitative analogue’ of X and the data mean, µ, which is the

input of the incremental method. Note that µ is important in order to keep track

of the data mean, which is a desirable property in the context of MCA, so as to

simultaneously update the center of the low dimensional space of the solution

(Iodice D’Enza and Markos, 2015).

First, the standardized residuals of the Burt matrix, SB, can be expressed in a form

closer to Equation 3, as follows:

SB = D−1/2
c (PB− ccT)D−1/2

c = D−1/2
c

(
ZTZ
nQ2
−Dc1c1T

c Dc

)
D−1/2

c =

=

[√
n
(

Z
Qn
− 1

n
1n1T

c Dc

)
D−1/2

c

]T [√
n
(

Z
Qn
− 1

n
1n1T

c Dc

)
D−1/2

c

] (4)

where 1n and 1c are two vectors with n and c elements, respectively, each one

equal to 1. Then, each of the elements of the product in Equation 4, can be written

as follows:

√
n
(

Z
Qn
− 1

n
1n1T

c Dc

)
D−1/2

c =

√
n

Z
Qn

D−1/2
c −

√
n

n
1n1T

c DcD−1/2
c =

Z
Q
√

n
D−1/2

c − 1√
n

1n1T
c D1/2

c =

Z
Q
√

n
D−1/2

c︸��������︷︷��������︸
X

−1n
1√
n

1T
c D1/2

c︸�������︷︷�������︸
µT

= SZ

where SZ is the standardized residual version of Z. Therefore, the required quan-

tities in the case of MCA are: X = 1
Q
√

n
ZD−1/2

c and µ = 1√
n
D1/2

c 1. Using the above

definitions of X and µ, we can describe any incremental MCA algorithm.
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Algorithm 1 A general Incremental MCA implementation

Require: Z =


Z1

Z2

...

 {incoming data stream split into blocks, with Q variables}

1: Zx = Z1 and m = 1

2: Sx = Q−1n−1/2
x ZxD1/2

cx −1cn−1/2
x 1T

c D1/2
cx {standardized residuals}

3: µx = n−1/2
x D1/2

cx 1c {mean vector}

4: Sx = UxWxVx {starting eigenspace}

5: while (incoming data block) do
6: Zy = Zm+1 {incoming block}

7: µy = n−1/2
y D1/2

cy 1c {mean vector}

8: nxy = nx+ny {data size update}

9: Drxy = n−1
xy

10: Dcxy =
(
nxDcx +nyDcy

)
n−1

xy {margins update}

11: Sy = Q−1n−1/2
y ZyD−1/2

cxy −1cn−1/2
y 1T

c DcyD
−1/2
cxy

{standardized residuals}

12: Sy = UyWyVy {eigenspace}

13: µxy =
(
µxnx+µyny

)
n−1

xy {mean vector update}

14: Obtain UxyWxyVxy {eigenspace update}

15: Fxy = D−1/2
rxy UxyWxy {row principal coordinates}

16: Gxy = D−1/2
cxy VxyWxy {column principal coordinates}

17: nx = nxy,µx = µxy,Dcx = Dcxy ,Ux = Uxy,Wx =Wxy,Vx = Vxy {update}

18: m = m+1

19: end while

Algorithm 1 presents the pseudo-code for the general incremental MCA im-

plementation. A categorical data stream arrives into blocks in the form of indicator

matrices, Z. For the first block, the standardized residuals matrix and the corre-

sponding eigenspace are computed (Lines 2 and 4). Then the block is discarded.

The procedure is iterated m−1 times, where m−1 is the total number of incoming

blocks, leading to m updates in total. The subscript ‘x’ refers to the current data

block, whereas the subscript ‘y’ refers to the incoming block. The updated quan-

tities are then indicated by the subscript ‘xy’. Note that the procedure does not

require to store any of the data blocks processed up to a certain point, except for

the incoming block. The crucial eigenspace update step (Line 14) can be achieved

using any of the methods described in the previous section. The time and space
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complexity of the algorithm largely depend on this step. Lines 15 and 16 calcu-

late the row and column coordinates which can be used to visualize the solution,

usually in two dimensions.

Recall that MCA involves a weighted SVD and the whole data matrix is un-

known in advance. Assuming no missing values, the row weights (or margins),

Dr, of each data block are all equal to 1/Q and equal to the ‘global’ row margins,

i.e., those of the full indicator matrix.  The column margins, Dc, however, are ex-

pected to differ across blocks and need to be approximated. A convenient choice

for the global column margins is the average of the ‘local’ column margins, that

is, the average margins of the data analyzed insofar (Line 10). The motivation for

this choice and an investigation of the convergence properties as the number of

data points increases is provided in Iodice D’Enza and Markos (2015).

5. SIMULATION STUDY

A simulation study was conducted to compare the performance of eight alter-

native incremental MCA variants, based on five stochastic approximation and

three heuristic EVD/SVD approaches: Stochastic Gradient Ascent (SGA), Sub-

space Network Learning (SNL), Generalized Hebbian Algorithm (GHA), Candid

Covariance-free Incremental PCA (CCI), Block Stochastic Power Method (BSP),

Incremental PCA (IPCA), Block-wise Incremental PCA (BIPCA) and Block-wise

Incremental SVD with mean update (BISVD). With the exception of BISVD, a

thorough comparison in terms of time and space complexity of these methods is

provided in Cardot and Degras (2017). The results are not expected to be any

different when the methods are embedded in MCA. For this reason, we focus

here our attention on a comparison in terms of accuracy, defined as the simi-

larity between the ordinary MCA and the incremental MCA configurations in k
dimensions. Another important aspect in this comparison is the performance of

block-based methods (BSP, BIPCA and BISVD) against vector-based methods.

Thus, we additionally investigate whether block-wise incremental analysis has

any effect on accuracy.

The setup of the simulation study has been adopted from Cardot and Degras

(2017). The function poLCA.simdata of the R package poLCA (Linzer and Lewis,

2011) was used to simulate categorical data sets that match the data-generating

process assumed by the basic latent class model. The number of latent classes

could randomly vary from 2 to 8 and the number of categories per variable from

2 to 7, with randomly generated probabilities of occurence of the different cate-

gories. Following Cardot and Degras (2017), the number of observations, n, was
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generated with n ∈ {103,104,105,106} and the number of variables Q ∈ {10,100}.
The eight algorithms under comparison were initialized by an MCA of the first

25% of the observations and then run on the remaining 75%. The number of es-

timated dimensions, k, was fixed to 5. The tuning parameters of the stochastic

methods, SGA, SNL and GHA, were selected by trial-and-error, as described in

Cardot and Degras (2017). For block-based methods (BIPCA, BSP and BISVD),

the recommended optimal block size was used (Iodice D’Enza and Markos, 2015;

Levy and Lindenbaum, 2000; Mitliagkas et al., 2013).

The accuracy of each method was measured in terms of the similarity be-

tween the ordinary MCA and the incremental MCA configuration in principal

coordinates. In particular, the similarity measure adopted was the R index, that

equals 1−m2, where m2 is the symmetric orthogonal Procrustes statistic. The

index ranges from 0 to 1 and can be interpreted as a correlation coefficient; it

was calculated using the function protest of the package vegan (Oksanen et al.,

2016). Ordinary MCA was applied using the ca package (Nenadic and Greenacre,

2007).

Table 1 shows the values of the R index (averaged over 1,000 replications)

between ordinary MCA and each one of the eight incremental MCA variants under

comparison, using the first k = 5 dimensions and different values of n and Q.

First, we notice that as the number of observations increases from 103 to 106,

incremental MCA configurations are getting more similar to those of ordinary

MCA for all methods. Also, as expected, when the number of variables increases

the performance generally deteriorates, since the number of retained dimensions

is fixed. Stochastic approximation methods perform quite similar to each other,

with the exception of BSP, which generally provides more accurate solutions. It is

easy to observe that the three block-based algorithms, BSP, BIPCA and BISVD,

lead to configurations that are more similar to ordinary MCA than vector-based

methods. BISVD seems to outperform every other method with the exception of

BSP, with which they have similar performance as n gets larger. It is important to

outline, however, that block-based methods are expected to be less efficient than

vector-based approaches in terms of computation time.

In incremental settings, retaining the very first few dimensions of the eigenspace

being updated leads to reduced memory requirements and an increased overall ef-

ficiency of the updating process. Therefore, we investigated the effect of k, the

number of retained dimensions during the updating process, on the similarity be-

tween ordinary and incremental MCA. The results are depicted in Figure 1 for

1,000 datasets of size 103×100, where the effect is more prominent. The average



228 Markos A., Iodice D’Enza A.

Figure 1: Similarity between ordinary and incremental MCA configurations obtained with
eight different algorithms for varying number of retained dimensions (k = 2 to 10)

R index, plotted on the vertical axis, shows how similar the k-dimensional config-

uration of incremental MCA is to the corresponding ordinary MCA configuration.

The degree of similarity was assessed for 2 up to 10 retained dimensions (hori-

zontal axis). The eight methods are represented by different lines. As expected,

incremental MCA becomes more similar to ordinary MCA with increasing dimen-

sions, whereas the relative differences between methods seem to remain stable. It

is important to highlight that even for k = 2 the configurations are highly similar.
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data size value BSP IPCA BIPCA GHA CCI SGA SNL BISVD

103×10
mean 0.77 0.75 0.76 0.75 0.75 0.75 0.75 0.77

sd 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06

103×100
mean 0.76 0.72 0.75 0.73 0.72 0.72 0.72 0.76

sd 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06

104×10
mean 0.83 0.80 0.83 0.81 0.80 0.81 0.81 0.83

sd 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06

104×100
mean 0.81 0.78 0.81 0.79 0.78 0.78 0.79 0.82

sd 0.02 0.07 0.06 0.07 0.06 0.07 0.07 0.07

105×10
mean 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.95

sd 0.08 0.09 0.09 0.09 0.09 0.09 0.08 0.09

105×100
mean 0.93 0.92 0.93 0.92 0.92 0.92 0.92 0.93

sd 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04

106×10
mean 0.97 0.94 0.96 0.94 0.94 0.94 0.94 0.97

sd 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04

106×100
mean 0.97 0.94 0.95 0.93 0.93 0.94 0.93 0.96

sd 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06

Table 1: Similarity between ordinary MCA and incremental MCA configurations obtained
with eight different algorithms for varying data size

the contrary, in line with Cardot and Degras (2017), vector-based stochastic ap-

proaches, SGA, SNL, GHA and CCI, provide the highest computation speed and

their almost sure convergence has been established. In practice, the best method

should be chosen on the basis of the most desirable balance of speed and accuracy,

given the circumstances.

Future research could focus on at least three areas. First, how incremen-

tal approaches accommodate nonstationary processes, i.e., how they account for

changes in the data streams needs further investigation. The stochastic algorithms

of Section 3.1 naturally accommodate nonstationary processes through the tuning

parameter γ. This parameter controls the weight given to earlier observations. In

the case of heuristic approaches, a so-called forgetting factor can be incorporated

6. CONCLUSIONS

In this paper we presented a general framework for computing low-rank incremen-

tal MCA solutions. By exploiting the relationship between PCA and MCA, we

embedded two main families of incremental PCA to the MCA context. A series

of experiments indicated that block-wise approaches, BISVD, BSP and BIPCA,

outperform vector-based methods in terms of computational accuracy; it seems

that larger incoming data blocks tend to reduce noise and estimation variability.

In addition, block-based methods offer a good compromise between accuracy and

speed. However, no theoretical guarantees exist (yet) for their performance. On
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