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DATA ANALYSIS: GOOD BUT …
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Abstract. In the 1950s Tukey and Benzécri led the Data Analysis movement, opposed to the
perceived mathematisation of statistics. This has flourished but we perceive some troubling
problems (Greenacre prefers challenges or opportunities) which are addressed in the
paper. These problems are manifest in the simplest analyses of two-way arrays of data
(Sections 2 - 3) and become worse with higher order arrays (Section 4). The most important
thing about Data Analysis is the Data, its type (e.g. how data is collected, the physical kinds
of variable, categories, counts, etc.) and the data structure (e.g. arrays, multiway tables,
symmetry etc.). Analysis is concerned with models, distances, norms, measures of
approximation and algorithms. Perhaps Data Analysis is in some danger of replicating the
kind of mathematisation it was designed to supplant.
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1. INTRODUCTION

This paper arose from a presentation titled Bees in my Bonnet2 that JCG gave at the
2015 Naples CARME conference but it also draws on the material discussed by NJL
and SGL at the same conference. This version retains some of that material but is
more concerned with issues involving the current position of the practice of Data
Analysis. In no way is it an attempt to give an exhaustive review of developments
in Data Analysis. Perhaps the following may be regarded as a State of the Union
address, but rather than focusing on the undoubted successes of Data Analysis we
shall focus on some problems (pace Greenacre) concerned with current practice. In
Figure 1 we see the Millionaire calculator used by Fisher nearly 100 years ago.
When Fisher said, perhaps apocryphally, I learned all my statistics at the computer
he was not so much saying that it was the calculating process itself which gave him
insights but it was the opportunity given for a close examination of the data. One

1 Corresponding  author: John C. Gower, email: j.c.gower@open.ac.uk
2 To keep talking about something again and again because you think it is very important.
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of us (JCG) recalls Yates, who succeeded Fisher at Rothamsted, talking about “data-
sniffing” in which to great advantage he ran his fingers over a set of data and sniffed
out errors or inconsistencies. So data analysis is very old and need not require
sophisticated equipment.

We should state at the outset that our position is that the term Data Analysis
is a synonym for Statistics and it was a reaction to the mathematisation of statistics
in the nineteen fifties (or thereabouts), when the work of John Tukey (1962) in the
USA and Jean-Paul Benzcri (1973) in France led to a resurgence in the analysis of
data and the name Data Analysis. Along with an increased interest in data has been
the phenomenal rise of computing, not forgetting the role that computers have
played in supporting the possibilities for generating visualizations. Mathematics
has a place in many disciplines (e.g. physics, engineering, astronomy, statistics, )
and almost every scientist finds computers useful but we should recognise that this
does not necessarily make them mathematicians or IT experts, although a few
individuals have excelled in these fields.

Similar remarks pertain to visualization where geometric ideas are often
supporting innovating ideas which are later developed in algebraic form (e.g.
Fisher’s derivation of several well-known probability distributions (e.g. Fisher,
1953), Karl Pearson’s fits of lines and planes (Pearson, 1901), Stephen Hawking
with cosmological models (see Mialet, 2012), Lew Pontryagin with algebraic and
differential topology (Pontryagin, 1966). The place of visualization in scientific
and mathematical innovation is one thing, and indeed one where some have strong
opinions, but in the following we shall be more concerned with the visualization of
data.

Perhaps more so in statistics than other disciplines, the benefits brought by
computers have quickly become readily accessible but there is a perception that
many users of the now readily available software are often not fully aware of its
limitations nor in a position to give informed critical comment either on the
numerical part of an analysis or on any associated visualizations. Ioannidis (2008)
refers to severe defects in the medical/pharmaceutical literature and Gower,
Groenen, Van de Velden and Vines (2014) comment similarly on the marketing
literature but the shortcomings are widespread. The actual collection of data, such
as in Sample Surveys and Designed Experiments gets lamentable attention with the
current focus seeming to be on accumulating large amounts of data rather than on
efforts to improve its quality. Thus, the general research population, which contains
few persons well-versed in data analysis, now has ready access to software.
Software may be misused in several ways – users may not understand it properly,
they may use inappropriate default settings, the software itself may be defective, its
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accompanying user-manual may be inadequate or wrong, visualizations may be
mis-scaled, fitted values may be inaccurate. The position is similar to the way the
general population self-medicates, informed by astute advertising; the result may
be good or harmless or disastrous. It is against this background that the following
surveys where we think that there are problems (i.e. challenges and even
opportunities) which we discuss in more detail below.

2. VISUALIZATIONS

Visualizations are often poor and sometimes very poor and on occasions they are
deliberately misleading. The strong temptation to see patterns in random
configurations of points is well-known (see Apophenia in Wikipedia). The risk of
apophenia when using measured variables is very real but it is even worse with non-
observable virtual variables (we use the term ‘virtual variables’ and not ‘latent
variables’ to avoid the clash with ‘latent vectors’ – see the section about ‘confusing
of words’), where researchers have to be on special guard. Far from being opposed
to the use of visualizations, even with virtual variables, we are enthusiastic users but
we are also aware of its dangers.

Figure 1: Fisher - I learned all my statistics at the computer. Reproduced with permission of
Rothamsted Research.



296 Gower, J.C., Gardner-Lubbe, S., Le Roux, N.J.

Happily, visualizations have become common but they are often defective and
often hard to interpret. We confess that, after a time lapse, we sometimes have
difficulties in interpreting our own visualizations. As well as the difficulties about
too much ink, inadequate labelling, unnecessary three-dimensional presentations
of two-dimensional objects like pie charts and histograms etc. that Tufte (1983,
second edition 2001) described so well in his classic book, there are many more
worries that can be laid at the door of Data Analysis. In data analysis, a frequent
problem concerns wrong aspect ratios either determined by the software or
sometimes by editors who want figures to fit comfortably onto the pages of a
journal. Figures that approximate distances or inner-products or use other measures
which depend on angles, cannot be rescaled at will. Other aspects that deserve
attention are:
(i) Axes are often placed concurrently at an origin which is at the centroid of

exhibited sample points. Such axes can confusingly intermingle with the
sample points and associated labelling shown in a visualization. Concurrency
is unnecessary as axes may be shifted independently towards the margins of a
visualization (Blasius, Eilers and Gower, 2009).

(ii) Numerical information should accompany every visualization to indicate
where approximations are good and where they are poor (Gardner-Lubbe, le
Roux and Gower, 2008).

Gower, Groenen, Van de Velden and Vines (2014) made some provisional proposals
for a series of icons that could accompany every published graph, to give guidance
in a coded form, on suitable measures (distances and angles among others) available
for correct interpretation. Visualizations that use icons are referred to as being self-
defining. Note that a system of icons not only helps define correct interpretation but
also alerts an inexperienced reader to the fact that there may be something that needs
attention.
Another of Tufte’s displeasures was the unnecessary and inappropriate use of
words, especially acronyms. Some of our favourite examples from the field of Data
Analysis follow:
(i) The use of the word Classification (for forming classes) which should be

carefully distinguished from the same word classification used to assign to
classes (Discriminant Analysis in statistics).

(ii) A sample refers to a single example but in mathematical writings it is often a
shorthand for denoting a set of samples? We had a major misunderstanding
with a referee about this!

(iii) Acronyms should be used sparingly. In particular, ALS refers to an algorithm
when it is the substantive method that matters more. The same applies to EM,
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IWLS and many more. In this paper we have found acronyms inescapable but
have tried to give the full name on its first appearance.

(iv) We acknowledge the genesis of “inertia” and “mass” in applied mathematics,
but they add little to the terms sum-of-squares and sample size, long used in
statistics.

3. DATA STRUCTURE

Computer software does not usually, if ever, give information on any limitations to
be placed on the suitability of data for which it may be used (Nishisato, 1994). Many
Data Analysis methods analyse two-way tables but computer languages are
concerned mainly with array dimensions. Statisticians are well-aware that a two-
way table is not the same as a data matrix; nested and crossed (and other)
classifications are crucial; as well as Boolean variables, counts, measured variables
(ratio and interval), mixed variables, (ordered) categorical variables have to be
distinguished; diverse kinds of symmetric and asymmetric matrix are common. It
is easy for a non-statistical user of software to plug-in all these kinds of data and get
output from the computer, unaware that it may be complete nonsense or defective
to some degree.

We shall use Principal Components Analysis (PCA) to draw attention to some
problems that occur throughout data analysis. PCA is one of the foundations of Data
Analysis but, despite its popularity and undoubted virtues, it is fraught with
problems. PCA is concerned with a data matrix X with n rows and p columns. The
rows refer to samples or cases and the columns to variables. X  has come to be known
as a data matrix. PCA was described by Karl Pearson (1901) as “On Lines and
Planes of Closest Fit to Systems of Points in Space” showing a strong geometric
attachment to data analysis. Of course, what Pearson was doing was to solve the
least-squares minimisation problem min || ˆ ||X X− 2  where X̂  is a rank r approxi-
mation to X. Indeed X̂  is given by the orthogonal projection of X onto an r-
dimensional plane. Pearson believed that his geometric approach “can be easily
applied to numerical problems” though calculations become ‘cumbersome’ for four
or more variables. Indeed, given modern computing power, the approximation X̂
sought by Pearson can be found by the singular value decompostion (SVD) of X for
a large number of variables although the latter is often arrived at via a simple
algebraic eigenvalue algorithm operating on the inner-product XTX. This approach
has been at the bottom of much misunderstanding, ever since Hotelling (1933) wrote
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of “Analysis of a Complex of Statistical Variables into Principal Components” in

which he wished to solve the problem min || ˆ ˆ ||X X - X XT T 2  which is concerned with

fitting a symmetric correlation matrix. Pearson was concerned with approximating
X while Hotelling was approximating XTX. To use PCA to describe both problems
is a confusion compounded by the fact that the same eigenvalue algorithm may be
used for both minimisations. There is another issue discussed by Bailey and Gower
(1990) who points out how the double entry of each off-diagonal term of a
symmetric matrix weighs the least-squares fit. This is admissible when the
eigenvectors of  XTX are used as a step in solving Pearson’s PCA or indeed the SVD
but strictly speaking it is suboptimal for Hotelling’s PCA. At the base of this
muddle is that the same algorithm is applied to two different data structures. It is

also why some PCA software highlights X̂  (Pearson) and some highlights the

eigenvectors V of XTX (Hotelling). This problem explodes when three-way and
higher order structures are considered (see Section 4, below).

The initial scaling of raw data is very important indeed. For obvious reasons
Hotelling’s analysis of correlations implies that each variable is normalised to zero
mean and unit sum-of-squares. Note that there is no question of normalising the row
(or column) sums of  XTX. The variables of Pearson’s PCA are also minimised to
have zero mean but this is most easily seen as a response to the discovery by
Huygens that the best fitting least squares plane to X passes through the centroid of
the n  points. In addition, when the  p variables have different scales of measurement,
some kind of initial scaling is necessary to induce commensurability. Normalising
by dividing by the square root of a unit sum-of-squares is often used but is not
obligatory; for example, among other possibilities, with positive measurements a
logarithmic transformation is invariant to changes in ratio-scale measurements, and
therefore has much to commend it.

The above shows some of the things that should be borne in mind when
contemplating what may look like a PCA problem. Even within the confines of two-
way arrays, many of the problems seen with PCA remain, possibly in broadened
form:
(i) A two-way structure may be a data matrix (asymmetric), or a table whose rows

and columns are interchangeable (symmetric), or it may be of within-between
type in which row-totals are irrelevant and columns may be of different lengths.
Our use of the words ‘asymmetric’ and ‘symmetric’ to describe different or
same treatments of rows and columns should be carefully distinguished from
the use of ‘asymmetric’ and ‘symmetric’ to describe different forms of matrix
– another potential confusion of the use of words which requires attention.
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(ii) Data types are of the upmost importance. Numerical values may be on ratio
scales or interval scales, categorical variables may be ordinal or nominal and
both may be coded in different ways and transformed into numerical scores.
Table 1 is a modified form of a figure given in Gower, Gardner-Lubbe and
le Roux (2016) who give more detailed information on variant ways of coding
categorical variables.

(iii) The choice of metric may be seen as part of the initial transformation of raw
data (e.g. Correspondence Analysis (CA) chi-squared metric, Canonical
Variate Analysis (CVA) Mahalanobis metric, Optimal scores for categorical
variables, the L1, or any other, norm are potential candidates for scaling). For
example a PCA of R-1XC-1/2 for row chi-squared metric (or R-1/2XC-1 for
column chi-squared metric) gives one of many variants of CA (see e.g. Gower,
Lubbe and le Roux, 2011). Similarly, the two-sided eigenvalue equation
BZ = AZΛΛ   with identification constraint t ZTAZ = I, implies that t ZTBZ = ΛΛ ,
and that ZZT= A-1, so giving the Mahalanobis metric. When the between group
sums-of-squares and products matrix  B= XTX, then  XZ is a PCA of the
between groups means which have inter-distances in the Mahalanobis metric
(for further details see Gower, Lubbe and Le Roux, 2011). The point which we
wish to make here is that many multivariate methods are essentially the PCA
of a non-arbitrary transformation of the initial raw data-set. Note that R-1/

2XC-1/2 gives another version of CA which treats rows and columns
symmetrically as discussed in (i), above.

(iv) The identification constraint of CVA points to another area of unease. The
orthogonality of the eigenvectors of a symmetric matrix is a mathematical fact
but the length of the vectors is more arbitrary. With CVA and CA and PCA itself
the justification for unit standardisation is clear but, especially in methods of
analysis that depend on purely algorithmic extensions, identification constraints
can become substantive constraints and so are central to the basic methodology.
It seems to us that substantive constraints are sometimes introduced purely for
the algorithmic convenience of improving convergence or speed. We note that
while poor convergence properties may be something that numerical analysts
may be concerned with, statisticians may see them as evidence of poor data or
unexpected linearities that should be reported and not artificially eliminated.

(v) Similar comments can be made about weighting. Just as we have identification
constraints and substantive constraints, also we have explicit weighting and
implicit weighting. By explicit weighting we mean that the researcher concerned
has deliberately chosen weights, for each sample or variable (or both) and these
will be taken into account in any subsequent analysis. Implicit weighting often
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4. THREE-WAY EXTENSIONS

With three, and higher order arrays, the confusions encountered between data-
matrices and two-way tables are even worse. Multiway-table extensions, for three
or more way tables, using linear models have been routine tools for over a century
and nowadays are often supplemented by generalised linear, or additive models.
The distinction between blocks (local controls) and treatments (including treatments
structure), not to mention the distinction between dependent and independent
variables, are fundamental to many statistical methods. Multiplicative terms to
represent interactions start with Fisher and Mackenzie (1923) but initially they were
not much used because of the challenging cost of the time required for extensive
eigenvalue calculations. Computers have made slight work of computing eigenvalues,
so making bilinear modelling routine. Nowadays, triple product models are
becoming more common (see Kroonenberg, 2008, for an excellent discussion).
Multi-way structure for sets of data-matrices, or sets of distance matrices or sets of
correlation matrices gives an especially useful class of three-way data. Then the
visualizations of the two-way group average may be displayed in the usual way and
the grouping factor displayed, separately or superimposed on the average. These
methods include CVA, sets of data-matrices, generalised canonical correlation and

Table 1: Diagram showing possible two-way structures, especially adapted for categorical
variables indicated by the coding matrices Gi. The diagonal matrices Li = GT

i Gi  give
the frequencies of the categories of the jth variable. The light grey region indicates

that row totals do not apply for variation within groups.

Objects 1  … jth variable …    p Combined S.S

1 GjZj Gjzj Gz zTGTGz

…

n

Total 1TLjZj (= 0T) 1TLjzj (= 0) 1TLz (= 0)

S.S zTLjzj = 1 zTLz = p

occurs with count data where the same category may have many occurrences.
Rather than writing 1 + 1 + … 1 = n  or even worse  12 + 12 + … 12 + 12 = n,
this type of summation is often condensed to give algebraic expressions that
look like as if they are concerned weights but are more properly to be regarded
as a convenient way of writing an unweighted mean or sum-of-squares.
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notably INDSCAL, which handles sets of inner-products or distance matrices. The

basic structure behind INDSCAL is the decomposition y
ijk

=
=∑ u v w

irr

R

jr kr1

proposed as a generalisation of the SVD decomposition y
ij

=
=∑ u v

irr

R

jr1
 which is

basic for developing many methods of analysis for two-way arrays of data.
Something similar (perhaps in tensor theory) might pertain to higher order arrays
of data and hence the name of the algorithm CANDECOMP (see also DEDICOM)
used for fitting data of type yijk. It proved simple to provide algorithms like
CANDECOMP to fit three-way data but nothing similar to the least-squares
properties of SVD seem to be available (see Chen and Saad, 2009, for a recent
account of current progress). With linear models it was recognised that even when
it is mathematically possible, it was inappropriate to fit three-way interactions
without also including main effects and two-way interactions (see the marginality
principle, Nelder, 1977). A concern is that algorithms developed for three-way
arrays have little place for the marginality principle and do not make special
provision for data arrays with symmetric matrix components. We have already seen
(Bailey and Gower, 1990) that the approximation of a correlation matrix as if it were
a square symmetric matrix has consequences and we would expect similar
consequences when concerned with multiway arrays.

The Tucker-2 model yijk
=

=∑ u v
ipp q r

P Q R

jq kr pqr
w z

, ,

, ,

1
is sometimes preferred to the

INDSCAL model. In this model, the three-way array with terms zpqr is termed the
core matrix and its size PQR is chosen to be much smaller than the size of the data
yijk. Note that the core matrix itself is a three-way array and so is a potential
candidate for analysis by, say, INDSCAL. The Tucker-2 model was developed as
a three-way generalisation of PCA and its properties, including its ability to
distinguish among main effects and interactions, are perplexing. We deduce that
while considerable progress has been made with developing algorithms for fitting
three-way models, much work is needed to assimilate their potential.

Even with a good understanding of the properties, there remains the challenge
of interpreting three (or more)-way interactions and how these combine with main
and bilinear effects. Visualizations of three way arrays are poor, except when we are
concerned with sets of two-way arrays, (Generalised canonical correlation, Sets of
data-matrices, CVA, INDSCAL, …). Then some kind of group average gives a
visualizable two-way summary and a third classification can give information on
departures from the average. Albers and Gower (2014) and Williams and Gardner-
Lubbe (2016) have given general methods for visualizations of rank-three three-
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way arrays, but even with this special case they are not visually compelling. Our
feeling is that that is about as far one can go with giving visually useful depictions
of interactions and, indeed, probably with understanding complicated interactions
in more general terms.

The rise in computing power has carried with it a rise in the development of
algorithms and this has been especially notable in data analysis. This trend has been
touched upon in this section about three-way arrays but it pervades all of data
analysis and probably extends far beyond to other fields of application. Algorithms
for computing matrix inverses, eigenvalues and singular values are used freely in
many methods of data analysis and have well-attested mathematical and numerical
validity. However, they may be incorporated into software to give extended forms
of analysis whose numerical properties are not so well attested. Sometimes data
analysis is said to allow the data to speak for themselves, but it is not always clear
what language or dialect they are speaking. Some new methodology is defined
entirely in terms of computer code, which in some sense is said to give results that
their authors find pleasing or informative but may be less compelling to others.
Quite a lot of time has been spent not so much in understanding how an algorithm
works but more on what information it is trying to convey. At one time, closed form
solutions were sought but algorithms incorporated in much modern software cannot
be regarded as a valid substitute for giving well attested solutions in closed form.
How an algorithm works is fairly simple to discover but what it is intended to
achieve is less clear. We are concerned that although the algorithmic approach is
welcome, there is a need for a more rigorous validation of its objectives and how
well they are met, than is commonly given.

5. CONCLUSIONS

Most of the above is about Analysis and a very restricted range of analytical
methods at that, although we hope that our comments have a wider bearing. Rather
than Analysis, perhaps the most important thing about Data Analysis is the Data.
A well-designed experiment is a prerequisite to a good analysis. Parolini (2015) has
drawn attention to how much effort Fisher put into the daily conduct and recording
of experiments. Fisher’s ideas soon spread from field experiments, to animal
experiments, to horticulture and engineering and thence to clinical trials and
pharmaceutical trials. The different fields of application threw up new challenges
and opportunities for innovations and they all had their own problems with
gathering data. Certainly, collecting data for observational studies in the social
sciences, where direct experimentation is challenging, needs more attention. Yates
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(1949) did something similar for surveys to Fisher’s work on experimental design,
using structured techniques such as stratified random sampling, multi-stage and
multi-phase sampling. Yates pointed out that a well conducted survey was much less
costly than an exhaustive census and gave comparable results. In contrast to the kind
of data often used in Data Analysis, for Yates sample data was mostly quantitative;
count data was only incidental and used mainly for estimating error bounds on
means. We are not sure where big-data fits in here but we feel that big does not
necessarily imply better; as much attention is needed to the collection of data as to
keeping an eye on its analysis.

We have been asked us to forecast how Data Analysis will develop in the
future. We are wary of forecasting the future of data analysis. M. G. Kendall gave
two forecasts 25 years apart and both wide of the mark; Tukey wasn’t much better
and JCG’s attempt to look ten years into the future was woeful. Since the
seventeenth century statistics has been led by the problems of the day and our
forecast is that this will continue. BIG Data and DNA are currently at the forefront
of statistical developments. Data visualization is another matter. The technology of
visualization has made giant strides and no doubt will continue to do so. The
resources of the entertainment industries are largely untouched in statistics (but see
Hans Rosling and his TED project). Apophenia, not to mention deliberate distortion
(see Tufte), will remain a problem. Statisticians will continue to use mathematics
as a tool and may even generate some of their own new mathematics, but keeping
a balance between applicable mathematics and mathematical abstraction will need
watching.
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