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Abstract. In the framework of Symbolic Data Analysis (SDA), distributional variables are
a particular case of multi-valued variables: each unit is represented by a set of distributions
(e.g., histograms, density functions, or quantile functions), one for each variable. Factor
analysis methods are primary exploratory tools for dimension reduction and visualization.
In the present work, we use a Multiple Factor Analysis (MFA) approach for the analysis of
data described by distributional variables. Each distributional variable induces a set of new
numeric variables related to the quantiles of each distribution. The set of quantile variables
related to a distributional one is treated as a block in the MFA approach. Thus, a MFA is
performed on juxtaposed tables of quantile variables. We show that the criterion decomposed
in the analysis is an approximation of the variability based on a suitable metric between
distributions: the squared L2 Wasserstein distance. Applications on simulated and real
distributional data corroborate the method. The interpretation of the results on the factorial
planes is performed by new interpretative tools that are related to several characteristics
of the distributions (location, scale, and shape).
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1. INTRODUCTION

In the framework of Symbolic Data Analysis (SDA), distributional (or distribution-
valued) data (DD) are data described by distributions (such as histograms, density,
or quantile functions) for a numeric variable. According to Bock and Diday (2000),
such data are realizations of a numeric modal symbolic variable, also named as a
distributional variable. In general, distributional data can be expressed by a
parametric or a non-parametric density function estimated on a set of observed
values. Dimension reduction techniques have been extended to the analysis of
multivalued variables to visualize the proximity between the individuals and the
correlations between the variables onto lower dimensional spaces. Factorial methods,
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such as Principal Component Analysis (PCA), are popular techniques for a
dimensional reduction of a set of p numeric variables observed on n individuals. The
aim is to extract a set of new orthogonal factors that explain the variance-covariance
structure through few linear combinations of the original variables.

PCA, similarly to all the other factorial techniques, reduces the redundant
information presented by the data such that the more the variables are correlated,
the higher the dimensionality reduction is.

When data are distributions, the extraction of new factorial axes should take
into account the characteristics of distributions and the variability among
distributions. Although the meanings of orthogonality, variance, covariance, and
correlation are consolidated for classical numeric variables, this is not the case for
distributional ones.

In the framework of SDA, different PCA methods have been proposed for
interval-valued data (see Lauro et al. (2008b) and Lauro et al. (2008a) for an
extensive review), but only a few proposals exist for distributional ones.

Some proposals have been designed for histogram-valued data (Cazes, 2002;
Le-Rademacher, 2008; Makosso-Kallyth and Diday, 2012; Nagabhushan and
Kumar, 2007; Rodriguez et al., 2000), and they differ regarding what variability
criterion is decomposed in the analysis.

Rodriguez et al. (2000) proposed a way to extend the PCA for interval data
(Cazes et al., 1997) to include histogram data by considering intervals of relative
frequencies. In this approach, it is supposed that the histograms share a common
partition of the support (i.e., the same set of bins) and that analysis is conducted only
on a transformation of the frequencies of the bins of histogram data. The decomposed
covariance structure of the data takes into account only the covariance of the centers
of the intervals of frequencies while the information related to the numerical
support of the histograms is ignored. In a second contribution (Cazes, 2002), a
variance-covariance matrix of a set of multivariate distributions is decomposed
under the hypothesis of conditional independence. In this case, the conditional
independence assumption leads a consideration of only the covariances between
the means, and the variability related to the different sizes and shapes of the
distributions is lost. Another proposal (Nagabhushan and Kumar, 2007) using a PCA
for histogram-valued data considers only the empirical frequencies observed for each bin
of the observed histograms, losing, like in Rodriguez et al. (2000), the information related
to the support. Ichino (2008, 2011) proposed a PCA of quantile representations of
symbolic data (they are particular transformations of the observed distributional data).
However, the author did not define the geometric properties of the decomposed covariances



Multiple Factor Analysis of Distributional Data 307

explicitly, and he did not give a suitable interpretation for the explained variability
on the factorial sub-spaces. Le-Rademacher (2008) proposed an extension of the
interval PCA for histogram-valued data (considered as weighted intervals). In this
case, the eigenvalues of the PCA decompose an inertia measure corresponding to
the sum of the variances of histogram-valued variables, as presented in Billard and
Diday (2006).

Finally, an extension of the interval PCA to include histogram variables was
proposed by Makosso-Kallyth and Diday (2012); here, a PCA is performed on the
means of the histograms (similar to a centers PCA). Then, using the Tchebicheff
inequality, the histograms are transformed into intervals and projected on the space
spanned by the principal components. Unfortunately, the principal components are
related only to the covariances of the means of the histograms. More recently, Wang
et al. (2014) proposed an adaptation of the previous methods for the PCA of normal
distribution-valued data.

All the above-mentioned methods do not explicitly require the definition of
a measure of covariance between distributional variables in advance. Some basic
statistics for histogram variables were presented by Bock and Diday (2000) and
developed by Billard and Diday (2006). Recently, Verde and Irpino (2008)
proposed new variance, covariance and correlation measures for distributional
variables based on the 12 Wasserstein distance (Rüschendorf, 2011) between
distributions.

Both approaches show that the variability of a distributional variable can be
decomposed in several components: in the approach of Billard and Diday (2006),
the data variability is expressed in the part related to the location and in the part
related to the scale; althogh in the approach of Verde and Irpino (2008), the shape
of the observed distributions is also taken into consideration. In particular, the
results of Verde and Irpino (2008), consistent with the statistical modeling of the
quantile functions proposed by Gilchrist (2000), show that the analysis conducted
on empirical quantile functions (the inverse of the cumulative distribution functions)
has two main interpretative advantages. First, working directly on the quantile
functions associated with the empirical distributions, it is not necessary to consider
a parametric hypothesis for the distributions. Second, it is possible to interpret the
contribution to the results related to the variability of the location, scale, and shape
of the distributions separately. More recently, Verde et al. (2016) proposed a PCA
method for a single distribution variable using an approximation of the Wasserstein
distance between distributions. The idea is to represent the distributional variables
through a set of quantile variables and then to apply the PCA to matrix of quantiles.
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The data are not standardized, so the information about the several characteristics,
i.e., location, size, and shape of the distributions, is retrieved in the determination
of the new factorial axes. The results of the analysis provide an interesting
interpretation of the axes according to the different moments of the distributions.

The present paper aims to use Multiple Factor Analysis (MFA) to analyze data
that are described by a set of distributional variables. MFA has been introduced by
the works of Escofier and Pagès (1983, 1988, 1990) (recent overviews are available
in Abdi et al. (2013) and Pagès (2014)). MFA is an extension of PCA on sets of
variables (namely, blocks of variables), and it is one of the multi-tables techniques
(e.g., STATIS, Multiblock Correspondence Analysis, SUM-PCA). MFA is conducted
in two steps: first, it runs a PCA of each block of variables, and then, it normalizes
each block by the respective first singular value, so that the first principal
components have the same length. Second, it performs a common representation of
the data sets, which is called a compromise or consensus representation. This
compromise is obtained from a (non-normalized) PCA of a table obtained from the
concatenation of the normalized blocks of variables.

Here, we propose to apply an MFA to a transformation of distributional
variables in sets of quantile variables. Each set of quantile variables is related to a
distributional variable and it is a block of variables in the MFA. The peculiarity of
this approach comes in the decomposition of an approximation of the total

variability of the distributional data according to the squared �2 Wasserstein
distance (see Verde et al. (2016)). In this way, we preserve the coherence between
the criterion optimized in the MFA and the distributional data space defined by the
12 Wasserstein metric. Finally, the proposal uses visualization and graphical
interpretative tools to analyze the relationships between distributions according to
their own characteristics, i.e., location, scale, and shape, on factorial planes.

The remainder of the paper is structured as follows: Section 2 introduces the
data and the Wasserstein metric between distributions. Section 3 presents the
extension of the MFA on quantile variables to analyze relationships between the
distributional variables observed on the same set of individuals. Section 4 shows a
new tool for the visualization of the distributional variables on the factorial planes.
Sections 5 and 6 show the results of the applications on simulated and real data,
respectively. Section 7 concludes the paper.
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2. DISTRIBUTIONAL VARIABLES AND THE WASSERSTEIN DISTANCE

Let E be a set of n individuals described by a distributional variable Y , i.e., a

modal-valued variable with a numerical domain S = [min(Y ),Max(Y )]⊂ ℜ. We

denote with yi (i = 1, ...,n), the realization of the variable Y for the i− th individ-

ual (Verde and Irpino, 2008), expressed by a (empirical or estimated) probability

density function fi(y). We denote by Fi(y) a cumulative density function (cdf) and

by F−1
i (t) (for t ∈ [0;1]) the corresponding quantile function (qf, i.e., the inverse

of the cdf). According to Gilchrist (2000), several advantages can arise by work-

ing with qf s rather than with the distribution functions: all the qf s have a finite

domain in [0;1], the sum of quantile functions returns a qf, the product of a qf by

a positive scalar returns a qf, and under certain conditions, it is possible to define

the product between two qf s.

Several proposals have been formulated in the framework of SDA to define

univariate (mean, variance, and standard deviation) and bivariate (covariance and

correlation) statistics for histogram variables (Billard and Diday, 2006; Bock and

Diday, 2000). Recently, Verde and Irpino (2008) introduced new measures based

on the Wasserstein distance, which is a suitable metric to compare distributions.

An overview of the family of Wasserstein metrics is presented by Rüschendorf

(2011); Villani (2003).

According to Rüschendorf (2011), the �p Wasserstein distance between two

(univariate) distribution functions can be expressed as follows:

dWp(yi,yi′) =


 1∫

0

∣∣F−1
i (t)−F−1

i′ (t)
∣∣p

dt




1
p

(1)

where, p ≥ 1, Fi and Fi′ are cumulative distribution functions (cdf s) associated

with the yi and yi′ histograms, and F−1
i and F−1

i′ are the corresponding quantile

functions (qfs). The �2 squared Wasserstein distance, also known as Mallow dis-

tance (Rüschendorf, 2011), between the qsf associated with two histograms is as

follows:

d2
W2
(yi,yi′) =

1∫
0

[
F−1

i (t)−F−1
i′ (t)

]2
dt. (2)

The �2 Wasserstein metric can be considered a natural extension of the Euclidean

metric between quantile functions.

Thus, the Wasserstein distance can be suitably computed for equi-depth his-

tograms with a fixed number of bins equal to s. Given the histogram description
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yi, this can be partitioned into s ≥ 1 bins as follows:

yi = {(I1i,π1i) , ...,(Ihi,πhi) , ...,(Isi,πsi)} ,

where Ihi = [y
hi

;yhi] is an interval of ℜ, and πhi ≥ 0 such that ∑s
h=1 πhi = 1. If yi is

an equi-depth histogram, then πhi =
1
s . The following quantities wli represent the

cumulative weights associated with the elementary intervals of y(i):

wli =

{
0 l = 0

∑
h=1,...,l

πhi l = 1, . . . ,s . (3)

For simplicity, we consider two equi-depth histogram descriptions y(i) and

y(i′) that have the same number of bins equal to s implying that the weights πli =

πli′ = wli −wl−1i =
1
s . In this case, being wli = wli′ , we omit the second index.

The squared Wasserstein distance between two equi-depth histogram descriptions

is computed as follows:

d2
W2
(yi,yi′) :=

s

∑
l=1

wl∫
wl−1

(
F−1

i (t)−F−1
i′ (t)

)2
dt. (4)

Each couple (wl−1,wl) allows us to identify two uniformly dense intervals,

one for i and one for i′, having, respectively, the following bounds:

Ili = [F−1
i (wl−1);F−1

i (wl)] = [y
li
;yli] and

Ili′ = [F−1
i′ (wl−1);F−1

i′ (wl)] = [y
li′ ;yli′ ].

The center and the radius of each interval are computed as follows:

cli = (y
lu
+ ylu)/2 rlu = (y

lu
+ ylu)/2 f or u = i, i′.

Because the histograms are equi-depth, all the πl are equal to 1/s. The inter-

vals that are uniformly distributed can be expressed as functions of their centers

and radii. Hence, the equation (4) can be rewritten as follows:

d2
W2
(yi,yi′) =

1

s

s

∑
l=1

[
(cli − cli′)

2 +
1

3
(rli − rli′)

2

]
. (5)

According to the Wasserstein metric, the mean histogram yb is defined as a

Fréchet mean by solving the following minimization problem:
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f (yb) = argmin
y

n

∑
i=1

d2
W2
(yi,y), (6)

which is expressed as follows:

yb =

[(
(c1b − r1b;c1b + r1b),

1

s

)
; . . . ;

(
(csb − rsb;csb + rsb),

1

s

)]
; (7)

where:

clb = n−1
n

∑
i=1

cli ; rlb = n−1
n

∑
i=1

rli.

Therefore, the variance of the distributional variable Y , according to (6) and

(7), is defined as follows:

Var(Y ) =
1

n

n

∑
i=1

d2
W2
(yi,yb) =

1

ns

n

∑
i=1

s

∑
l=1

[
(cli − clb)

2 +
1

3
(rli − rlb)

2

]
. (8)

In the next section, we will show that Var(Y ) can be approximated by the

sum of the variances of the quantile variables of the distributional variable Y .

If histograms are not equi-depth, the computations are done in accordance

with Irpino and Verde (2014). In such a case, a homogenization step is requested

for comparing histograms through the Wasserstein distance. The support of the

distributional data is shared according to a set of quantile values corresponding to

the same set of density levels pi for all the distributions.

2.1. OTHER PROPERTIES OF THE �2 WASSERSTEIN DISTANCE

The advantage of using the �2 Wasserstein distance for comparing distribu-

tional data is related to the property that it satisfies: the squared distance between

two distributions can be decomposed according to the following three components

(as shown by Irpino and Romano (2007)):

d2
W (yi,yi′) =

1∫
0

[
F−1

i (t)−F−1
i′ (t)

]2
dt =

= (µi −µi′)
2︸��������︷︷��������︸

Location

+(σi −σi′)
2︸��������︷︷��������︸

Scale

+2σiσi′(1−ρi,i′)︸���������������︷︷���������������︸
Shape︸���������������������������������︷︷���������������������������������︸

Variability

. (9)
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where µu and σu (with u = i, i′) are, respectively, the means and the standard

deviations of the distributions yi and yi′ , while ρi,i′ , is the Pearson correlation

coefficient between two quantile functions F−1
i (t) and F−1

i′ (t)

Therefore, ρi,i′ can be considered a measure of shape similarity of two dis-

tribution functions. In fact, ρi,i′ = 1 only if the two distributions have the same

standardized quantiles (by the respective mean and standard deviation), which

occurs when the two distributions have the same shape.

The decomposition of the squared �2 Wasserstein distance between two dis-

tribution functions allows for the evaluation of their deviation in terms of location,

scale, and shape. The difference in location and scale is, respectively, expressed

by the squared Euclidean distances between the means and between the standard

deviations of the two distributions; while the difference in shape is related to the

value of ρi,i′ . The scale and shape components express together the difference of

the variability structure between two distributions.

3. MULTIPLE FACTOR ANALYSIS ON THE QUANTILES OF DISTRI-
BUTIONAL VARIABLES

In this section, we present an MFA on a set of data tables containing the quantile

representation of several distributional variables observed on the same individ-

uals. MFA extnends PCA providing a set of common factors for projecting data

described by blocks of variables onto a compromise subspace (Escofier and Pagès,

1983). The main idea is to extend the PCA methods for distributional data (Verde

et al., 2016) to the case of multi-tables analysis.

According to the PCA strategy on a distributional variable Y , distributions

are replaced by a set of predefined quantiles that are assumed to be values of the

variables of the analysis.

Let E be the set of p histograms yi j (for j = 1, . . . , p) related to the descrip-

tion of the i− th individual w.r.t. the Y1, . . . ,Yj . . . ,Yp variables. Each yi j is the

histogram of values that the i− th individual assumes for the variable Yj. We

consider that all the histograms are equi-depth, so the bounds of the intervals

Ili = [y
li
;yli] (for l = 1, . . . ,Kj − 1), and they correspond to the Kj-quantiles, i.e.,

the values that divide the distribution in Kj equal parts). We have denoted by Kj

the number of quantiles for each variable Yj that can be also chosen as different

for each of them (K1 . . .Kj . . .Kp).

For the generic variable Yj, we denote it with the following:



Multiple Factor Analysis of Distributional Data 313

qi0, j = y
1i, j

= min(yi j),

qil, j = yli, j ( f or l = 1, . . . ,Kj −1) and

qis, j = yKji, j = Max(yi, j) ∀i = 1, . . . ,n

To perform a PCA on quantiles, we consider the input a concatenation of

classic n× (Kj +1) data tables (with j = 1, . . . , p), denoted with Q j as follows:

Q = [Q1|...|Q j|...|Qp] (10)

Each row of the j − th table Q j is an individual representation expressed

by the following order statistics: the minimum value (or zero quantile) qi0; the

l-quantiles qil; and the maximum value or Kj − th quantile, qiKj .

The generic i− th individual (row) observed for the (single) distributional

variable Yj is described by a set of (Kj+1) quantiles (columns): Q0 j, . . . ,Ql j, . . . ,QKj j

with 1/Kj probability, or the relative frequency of the observed values between

two consecutive quantiles.

Q j =




q10, j q11, j ...q1l, j ... q1Kj, j

... ... ... ... ...
qi0, j qi1, j ...qil, j ... qiKj, j

... ... ... ... ...
qn0, j qn1, j ...qnl, j ... qnKj, j




We assume that the elements of the matrix Q j are centered by subtracting the

means of the respective quantile variables Ql j (for l = 1, . . . ,Kj).

For simplicity, we refer to the columns of the matrix Q j as centered quantile-
variables. The choice not to standardize the quantile variables preserves the ap-

proximation of the variance of a distributional variable based on the Wasserstein

metric by the sum of the variances of the quantile variables (as shown hereafter).

Particular care should be taken regarding to the lower and higher quantile vari-

ables. Indeed, the empirical evidence (see applications on simulated and real data)

reveals that those quantile variables may have a higher variability with respect to

the other ones. This can be checked before the analysis is performed. A practi-

cal solution is to consider the extreme quantile variables as supplementary in the

analysis or to give lower weights with respect to the other ones.

We denote by W the matrix of the individual weights; assuming that all of

them have the same weight, it is a diagonal matrix of elements 1
n .
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Moreover, we define the cross-product of quantiles matrix Q j, weighted by

W, as follows:

Sj = QT
j WQ j (11)

where S j is the variance-covariance matrix of the quantile variables of Yj. Then,

the cross-product of the matrix Q, weighted by W, is as follows:

S = QTQ = [Q1|...|Q j|...|Qp]
T W [Q1|...|Q j|...|Qp] = ∑

j
QT

j WQ j = ∑
j

S j. (12)

The S is the block variance-covariance matrix of the quantile variables Ql j

(for l = 0, . . . ,s) of the Y1, . . . ,Yj . . . ,Yp.

The trace of the matrix S (denoted by Tr(S)) is equal to the sum of the vari-

ances of the quantile variables Ql j (denoted by Var(Ql j)) (for l = 0, . . . ,s and

j = 1, . . . , p).

Now, we show the relationship between the usual �2 Wasserstein metric used

in the analysis of distributional data and the criterion decomposed in the MFA.

Verde et al. (2016) showed that the trace of S j (denoted by Tr(S j)) approxi-

mates the variances of the distributional variable Yj (denoted by Var(Yj)), accord-

ing to the �2 Wasserstein distance.

Denoted by ∆, the deviation is as follows:

∆ = Tr(S j)−Var(Yj). (13)

This depends on the number of quantiles and on the number Kj (with K =
p
∑
j=1

Kj)

of the intervals (bins) of the supports of the n histogram data, as follows:

∆ =

n
∑

i=1

Kj

∑
l=0

(qc
il, j)

2 −∑n
i=1 ∑Kj

l=1

[(
cc

il, j

)2

+
(rc

il, j)
2

3

]
n ·K .

with cc
il, j = cil, j − c̄l, j, rc

il, j = ril, j − r̄l, j, the rescaled center and radius on the re-

spective means.

3.1. THE TWO STEPS OF MFA

The MFA is performed in two steps.

The first step consists of a PCA on each data table Q j. The results are ob-

tained by the SVD decomposition, as follows:



Multiple Factor Analysis of Distributional Data 315

Q j = U jΛ jVT
j . (14)

subject to the usual ortho-normality constraints as follows

UT
j U j = VT

j V j = I.

The factor scores are computed as follows:

Ψ j = U jΛ j (15)

where Λ j is the diagonal matrix of the eigenvalues of the matrix Q j.

In the MFA, each table Q j is normalized by the respective squared first eigen-

value λ1 j, corresponding to the highest value of Λ j, i.e., the following:

a j =
1

σ
(16)

where σ = λ 2
1 j.

The a j for j = 1, . . . , p can represent a system of weights for each matrix that

can be arranged in a diagonal matrix A, as follows:

A = diag{[a11T
[K1]

, . . . ,a j1T
[Kj]

, . . . ,ap1T
[Kp]

]} (17)

where 1[Kj] is a vector of ones, and Kj is the number of quantile-vectors of each

block matrix Q j.

The second step of the MFA consists of a global PCA of the matrices Q j

normalized by the a j, which is done by considering the weights of the individuals

that are assumed to be all equal to 1
n . The matrix of the weights of the individual

is denoted as W.

In such a way, the MFA is equivalent to an analysis of the triplet (Q,W,A),

according to the classical definition of the French school (see Lebart et al. (2006)).

The eigensolutions can be obtained by a Generalised SVD of the matrix Q,

as follows:

Q = UΛVT (18)

under the following constraints:

UT WU = VTAV = I. (19)

Note that for simplicity, the eigenvectors’ and eigenvalues’ matrices are de-

noted with the same letters as in SVD.
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The factor scores of the single quantile vectors of Q j are computed as follows:

Ψ j,α = a jQT
j vα (20)

where vα is the eigenvector associated with the α − th eigenvalue (α = 1, . . . ,L
where L is the rank of S).

The factor scores represent a sort of compromise for a common representation

in a reduced subspace of the variability structure of the matrices Q j j = 1, ...,n.

The compromise factor score Ψα is the barycenter of the partial factor scores

obtained as the average of the p partial scores factors, as follows:

Ψα =
1

p ∑
j

a jQT
j vα . (21)

The representation of the individuals (the rows of Qj) can be obtained ac-

cording to the classical biplot on the reduced subspaces, as follows:

Φ j,α =
1

λα
a jQ juα . (22)

4. TOOLS FOR THE INTERPRETATION: THE SPANISH FAN PLOT

Starting from the results of the MFA, it is interesting the interpretation of the

proximities between the distributions according to the characteristics, i.e., loca-

tion, scale and shape, that have contributed more to the determination of the axes.

Indeed, in the determination of the factorial axes, the components related to

location, scale, and shape, into which the variance (based on the �2 Wasserstein

distance) of the distributional variable Y can be decomposed, play a different role.

In fact, each factor axis is oriented toward the direction of the variability of the

means (location parameters), of the standard deviations (size parameters), and of

the skewness and kurtosis (shape parameters), respectively. Therefore, the advan-

tage of the proposed approach is its ability to interpret the axes according to the

different characteristics of the distribution-valued data. If an MFA is performed

on sets of four variables (namely, one set for for each distributional variable) rep-

resenting the first four moments of the distributions, the results are not so evident.

As in a classical PCA, the representation of the quantile-variables on the fac-

torial planes (e.g., the first plane for α equal to 1 and 2) is given by a circle of

correlation given by the quantile vectors. For improving the interpretation of the

plots, we connect the consecutive quantiles according to their natural order on the
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factorial plan. This results in a nice representation of the quantile-vectors that

looks like a Spanish fan. We call this representation a Spanish-fan plot. Each

Spanish-fan allows the analysis of the structure of global variability and the visu-

alization of the characteristics (variability and shape) of the distributional variable.

We observe that the quantile variables representation usually follows a kind of or-

der (being, in general, two consecutive quantile-variables more correlated w.r.t.

two non-consecutive ones). We can explain the pattern of the fan with respect to

the correlation (i.e., the angle) between two consecutive quantile-variables ql and

ql+k (k = l +1, . . . ,s). For example, it is interesting to observe that when the dis-

tributions are almost symmetric, the correlation between ql and ql+k decreases as

k (k = 1,2, . . . ,s− l +1) increases. Thus, the shape of a Spanish-fan plot impacts

the interpretation of the factorial plans. When the distributions are different ac-

cording to their first four moments, we show that the first plane better explains the

variability of the locations and scales of the distributions: the more open the fan
is, the higher the variability of the distributions is; while the second factorial plane

(third and fourth axis) usually explains the variability in skewness and kurtosis of

the distributions.

Other typical measures, such as the relative contribution, denoted by cr, can

help interpret the axes. Similar to the classical PCA, the relative contribution of

the i− th distribution to the determination of the α − th axis is a measure of how

much the variance explained by the α − th axis is because of the l − th quantile

variable.

Further, the quality of the representation of the individuals (distributions) and

of the quantile variables is measured by the absolute contributions, denoted by ca.

Similar to the classic PCA, absolute contributions sum to one for each distribution

(respectively, for each quantile-variable), and the higher the contribution is, the

better the distribution is represented on the axis (or on the plane, if we consider

the sum of ca’s of each axes of the plane).

5. AN APPLICATION OF THE MFA ON SIMULATED DATA

In this section, we present an application of the proposed MFA on simulated data.

For simplicity, we consider only two distributional variables. The simplicity of

the proposed application aims to highlight the power of the method, especially as

a visualization tool.

Recalling that the proposed MFA method provides the latent structure of the

quantiles for each variable according to the first four moments of the distribu-

tions, we consider two sets of histogram data observed for the same n individuals.
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The data related to the first quantile variable are sampled from Gaussian distribu-

tions with the same mean but different standard deviations; the second ones are

sampled from shifted and scaled Beta distributions. Ten histogram data for each

variable were generated as follows: one thousand values were sampled for each

distribution, and 19 quantiles are extracted, such that each bin, bounded by two

consecutive quantiles, contained 5.55% of the sampled values. In this case, it is

equivalent to set up an equi-depth histogram for each distribution that has 18 bins.

Using smoothed representations, the two configurations are shown in Fig. 1. The

box-plots of the sampled data for each distribution are represented in Fig. 2 and

Fig. 3, respectively.

A partial PCA is performed on each block of quantile variables related to Y1

and Y2. Q1 and Q2 matrices comprise 19 quantile variables (including the min

values), respectively. The quantile variables are centered w.r.t. the corresponding

Figure 2: Characteristics of the point distributions of the first distributional variable Y
1

Figure 1: Representation of the two sets of distributional variables
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mean values, but are not scaled.

In this first step, MFA decomposes the covariance matrices S1 and S2, re-

spectively. Consistent with the characteristics of the first distributional variable

Y1, the first latent factor is related to the variability of the standard deviations, as

observed in the two plots in Fig. 4. Indeed, although the correlation is not strong

with the central quantile-variables because all the Gaussians have the same mean

(and median), we note that the first axis is strongly correlated with the extreme

quantile-variables. Each distribution, suitably scaled horizontally and vertically,

is placed at the point related to the individual, such that the mean corresponds to

the abscissa of the point (right panel of Fig. 4). Following the first axis direction,

it is worth noting that the distributions are ordered from lower to higher values of

the standard deviations.

Figure 3: Characteristics of the point distributions of the second distributional variable Y
2

Figure 4: Representation of the quantile variables of Y
1 
on the first factorial plan

(Explained inertia 99.98%)
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The partial PCA on the second set of quantile-variables associated with Y2

is based on the decomposition of the covariance matrix denoted by S2. Figure

5 shows the representation of the variables by the Spanish-fan plot (on the left)

and of the individuals by overlapping the distributions (on the right) on the first

factorial plane.

Because the distributions are all skewed, the representation of the quantile-

variables on the first plane (which explains 100% of the total inertia, with the first

axis being 88.21%) is very different from the representation of the set of quantile

variables associated with Y1. Further, the shape of the Spanish-fan (the left panel

of Fig. 5), a scalene triangle, is related to the fact that all the distributions are

right skewed. Observing the representation of the individuals by their projected

distributions (on the right side of Fig. 5), it is worth noting that along the first

axis, the distributions are placed from the lower to the higher mean values (the

first value between brackets at the bottom of each distribution) while the second

factorial axis is the opposite(the second value between brackets).

The second step of the MFA is performed on the global matrix Q. Figure 6

shows a simultaneous representation on the first factorial plane of the Spanish-fans
of the two sets of quantile-variables (on the right side). The explained inertia of the

first two factorial axes is 90.2%. Because in the partial analysis the first Spanish-
fan of the set of quantile-variables in Q1 was strongly related to the variability

component of the distributions (std), while the second Spanish-fan of the set of

quantile-variables in Q2 was characterized by the values of the means on the first

axis and by the values of the std on the second axis, in the global analysis, the first

Spanish-fan plot appears rotated along the second dimension, which is related to

the variability of the distributions, whereas the first axis is influenced by the values

Figure 5: Representation of the quantile variables of Y
2
 on the first factorial plan

(Explained inertia=100%)
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Figure 6: On the left side: Representation of the quantile variables of Y
1
 and Y

2
 on the first

factorial plan (Explained inertia=90.2%).
On the right side: The circle of correlations between the factorial axes of the partial analyses

and the factor axes of the global analysis.

of the means. This is also explained by the graphical representation (on the right

side of Fig. 6) of the correlations between the factorial axes of the partial analyses

and the ones from the global analysis.

The representation of the individuals on the first factorial plane is displayed in

Fig. 7. The points labeled by numbers are the projection of the individuals on the

first plane obtained with the MFA global phase. For interpreting the position of

the individuals on the factorial plane, the respective distributions of the variables

Y1 and Y2 are projected in supplementary.

In Fig. 8, a different representation of the individual on the first factorial plane

is proposed. It is obtained by placing the distributions of each individual for the

two variables in the same location points but one on the top and one at the bottom.

This was possible because we had just two distributions for each individual.

Figure 9 shows the vectors corresponding to the two distributional variables.

The correlation between the synthesis of the two sets of quantile-variables is ex-

pressed by the cosine of the angle on the factorial plane, according to the clas-

sical measure RV proposed by Escofier and Pagès (1988), which in this case is

RV = 0.2257.
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Figure 8: Representation of the individual distributions with respect to Y
1 
and Y

2
 on the first

factorial plane (Explained inertia=90.2%). The distributions are drawn on the top
and bottom of the global coordinates of the individuals.

Figure 7: Representation of the individual distributions with respect to Y
1
 and Y

2
 on the first

factorial plane (Explained inertia=90.2%). The distributions are drawn on the
partial coordinates of individuals while the global coordinates of the individuals are

labeled by the integers.
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Figure 9: Correlation between the synthesis of the two sets of quantile-variables as
expressed by the two vectors Var1 and Var2. RV=0.2257.

6. AN APPLICATION OF THE MFA ON REAL DATA

In this section, we present an application of the proposed MFA on a dataset
described in (Billard and Diday (2006)). The dataset contains Cholesterol,
Hemoglobin and Hematocrit levels observed for 14 groups of patients (each group
is identified by a sex-age typology) using histograms of values. The size and the raw
data of each group are not available, thus a classical PCA is not possible. The dataset
is also available in the HistDAWass package2 developed in R. The data table is
shown in Fig. 10. The analysis is performed using 20 quantiles for each histogram.
The MFA returns the components with their associated eigenvalues, as presented
in Tab. 1. We note that the first two components synthesize 96.16% of the total
variance, so we represent the main results using only the first factorial plane.

The variables are represented by Spanish-fan plots. Because each set of
quantiles defines a block of variables in the MFA, we show the correlation plot of
the Spanish-fans on the first factorial plane, which explains 92.54% of the total
inertia. In Fig. 11, we show the Spanish-fan plots, while in Fig. 12, we observe the
correlation between the axes of each partial PCA and each variable.

2 https://cran.r-project.org/web/packages/HistDAWass/index.html
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Table 1: BLOOD dataset: eigenvalues of each component

Components Eigenvalue % of variance cum. % of variance

comp 1 2.28 71.55 71.55
comp 2 0.67 20.98 92.53
comp 3 0.12 3.63 96.16
comp 4 0.07 2.12 98.27
comp 5 0.02 0.58 98.85
comp 6 0.02 0.48 99.33
comp 7 0.01 0.25 99.59
comp 8 0.01 0.18 99.76
comp 9 0.00 0.13 99.89

comp 10 0.00 0.06 99.95
comp 11 0.00 0.03 99.98
 comp 12 0.00 0.01 99.99
comp 13 0.00 0.01 100.00

Figure 10: The BLOOD dataset
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Figure 11: MFA first factorial plane: Spanish fan plots

Figure 12: MFA first factorial plane: Correlation between the first three axes (dimensions
DIM1, DIM2, and DIM3) of the partial PCA (for each distributional variable)
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In Fig. 11, we note that the Hemoglobin and Hematocrit Spanish-fans almost
overlap while the Spanish-fan of the Cholesterol variable is rather orthogonal to the
others. Further, observing the spanning of the fans, it is worth noting that the
distributions for the Cholesterol levels are less variable in scale (otherwise, the span
should be more open) than those related for the Hemoglobin and Hematocrit levels.
In Fig. 12, we observe that the MFA’s first axis is positively correlated with the first
axes of the partial analyses on the Hemoglobin and Hematocrit variables, while
Cholesterol presents a higher correlation to the second MFA axis.

Further the second axes of the partial analyses present a low correlation on the
MFA’s first plane. Looking at both figures, we note that the first axes of the three
partial analyses for each distributional variable, are oriented toward the direction
of the central quantiles; thus, they are mainly related to the variability of positions.
The other axes that are related to the variability of scales and shapes are associated
with very small eigenvalues; thus, they poorly explain the variability of the
distributional data.

The representation of individuals on the first factorial plane is performed by
projecting the original distributions as supplementary variables on the factorial plane.
The distributions are centred on the coordinates of each individual. To show the main
characteristics of the individuals according their distribution for each variable, Figs. 13,
14, and 15 show the distributions for the Cholesterol, Hemoglobin and Hematocrit
variables. Each plot is organized such that on the left, individuals are labeled according to
their name, while on the right, individuals are labeled according to their mean value, and
the darker the distributions are, the higher their mean is. In this way, Fig. 12, for each
distributional variable, shows that the first axis opposes distributions with lower and higher
mean values. Whereas the second axis opposes distributions according to lower and higher
values of the scale and shape parameters.

Figure 13: MFA first factorial plane: Plots of individuals for the Cholesterol variable, data
are labeled with the object name on the left, and with the mean value on the right.
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6.1 COMMENTS

As expected, being related to the quantity of iron in the blood cells, the Hemoglobin
and Hematocrit are positively correlated to each other, and their values are higher
in younger people. Cholesterol has a low correlation with the other two variables,
and its mean value tends to increase from younger to older people. For the other
scale and shape comparisons, there are very slight differences between the
distributions. Thus the analysis is only slightly influenced by those aspects. It is
possible to compare the scale and the shape of M-20 and F-20 on the factorial planes
for the Hemoglobin and Hematocrit variables, observing that on the top of the

Figure 14: MFA first factorial plane: Plots of individuals for the Hemoglobin variable,
data are labeled with the object name on the left, and with the mean value on the right.

Figure 15: MFA first factorial plane: Plots of individuals for the Hematocrit variable,
data are labeled with the object name on the left, and with the mean value on the right.
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factorial plane, there are the distributions with low values for the standard deviation
and kurtosis (Tab. 2).

Table 2: BLOOD dataset: kurtosis of each distribution  computed as the fourth
standardized moment.

Objects Cholesterol Hemoglobin Hematocrit

u1: F-20 3.37 3.08 3.00
u2: F-30 3.23 4.10 2.72
u3: F-40 2.95 3.60 2.50
u4: F-50 3.18 2.81 2.51
u5: F-60 2.65 2.77 2.58
u6: F-70 2.65 2.91 2.61

u7: F-80+ 3.04 2.72 2.73
u8: M-20 2.85 2.14 1.96
u9: M-30 3.16 2.83 2.73
u10: M-40 2.83 2.61 2.66
u11: M-50 2.74 3.44 2.49
u12: M-60 3.37 2.34 2.63
u13: M-70 1.92 2.37 1.86

u14: M-80+ 2.56 2.42 1.94

7. CONLUSIONS

This paper represents an extension of the MFA for a PCA method for distributional
data based on the �2 Wasserstein distance between distributions. We showed that
the trace of the covariance matrix of the quantile-variables approximates the
variance of a distributional variable computed with the Wasserstein metric. Previous
approaches were not related to a particular metric between distributions; thus, a
comparison could not be performed. Using quantile-variables, we observed that the
proposed PCA enables us to identify the differences in the structure of the several
sets of variables in the analysis according to the main characteristics of the
distributional variables: position, scale, and shape. The classical MFA on standard
data was enriched by the nature of the analyzed data. The characteristics of the
observed distributions are emphasized by the peculiar tools for the interpretation.
Further, a novel Spanish-fan plot was introduced to describe the relations among the
quantile-variables projected on the factorial planes. We showed how to interpret the
shape of a fan with respect to the characteristics of the distributions. Therefore, the
similarity between the distributions (individuals in the analysis) is well interpreted
according to the similarity between their parameters on each axis. The proposed
applications on simulated and real data have shown how each axis is strongly related
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to the variability of the parameters of position, scale, and shape. Aiming to show the
advantages of the method and giving more readable factorial planes, only a few
distributional variables were considered in the applications.
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