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Abstract. In the framework of Symbolic Data Analysis (SDA), distributional variablesare
aparticular caseof multi-valuedvariables: eachunitisrepresented by a set of distributions
(e.g., histograms, density functions, or quantile functions), one for each variable. Factor
analysismethodsare primary exploratory toolsfor dimension reduction and visualization.
Inthe present work, we use a Multiple Factor Analysis(MFA) approach for the analysis of
datadescribed by distributional variables. Eachdistributional variableinducesaset of new
numericvariablesrelated tothequantilesof each distribution. The set of quantilevariables
related to a distributional oneistreated as a block in the MFA approach. Thus, aMFAis
performed onjuxtaposed tablesof quantilevariables. Weshowthat thecriterion decomposed
in the analysis is an approximation of the variability based on a suitable metric between
distributions: the squared L, Wasserstein distance. Applications on simulated and real
distributional data corroboratethemethod. Theinter pretation of theresultson thefactorial
planesis performed by new interpretative tools that are related to several characteristics
of the distributions (location, scale, and shape).
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1. INTRODUCTION

Intheframework of Symbolic DataAnalysis(SDA), distributional (or distribution-
valued) data(DD) are data described by distributions (such as histograms, density,
or quantilefunctions) for anumeric variable. According to Bock and Diday (2000),
such data are realizations of a numeric modal symbolic variable, also named as a
distributional variable. In general, distributional data can be expressed by a
parametric or a hon-parametric density function estimated on a set of observed
values. Dimension reduction techniques have been extended to the analysis of
multivalued variables to visualize the proximity between the individuals and the
correlationsbetweenthevariablesontolower dimensional spaces. Factoria methods,
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such as Principal Component Analysis (PCA), are popular techniques for a
dimensional reduction of aset of pnumericvariablesobservedonnindividuals. The
aimistoextract aset of new orthogonal factorsthat explainthevariance-covariance
structure through few linear combinations of the original variables.

PCA, similarly to all the other factorial techniques, reduces the redundant
information presented by the data such that the more the variables are correlated,
the higher the dimensionality reduction is.

When data are distributions, the extraction of new factorial axes should take
into account the characteristics of distributions and the variability among
distributions. Although the meanings of orthogonality, variance, covariance, and
correlation are consolidated for classical numeric variables, thisis not the casefor
distributional ones.

In the framework of SDA, different PCA methods have been proposed for
interval-valued data (see Lauro et al. (2008b) and Lauro et al. (2008a) for an
extensive review), but only afew proposals exist for distributional ones.

Some proposal s have been designed for histogram-val ued data (Cazes, 2002;
Le-Rademacher, 2008; Makosso-Kallyth and Diday, 2012; Nagabhushan and
Kumar, 2007; Rodriguez et a., 2000), and they differ regarding what variability
criterion is decomposed in the analysis.

Rodriguez et al. (2000) proposed away to extend the PCA for interval data
(Cazes et d., 1997) to include histogram data by considering intervals of relative
frequencies. In this approach, it is supposed that the histograms share a common
partition of thesupport (i.e., the sameset of bins) andthat analysisisconducted only
onatransformation of thefrequenciesof thebinsof histogram data. Thedecomposed
covariancestructure of the datatakesinto account only the covariance of thecenters
of the intervals of frequencies while the information related to the numerical
support of the histograms is ignored. In a second contribution (Cazes, 2002), a
variance-covariance matrix of a set of multivariate distributions is decomposed
under the hypothesis of conditional independence. In this case, the conditional
independence assumption |eads a consideration of only the covariances between
the means, and the variability related to the different sizes and shapes of the
distributionsislost. Another proposal (Nagabhushan and Kumar, 2007) usinga PCA
for histogram-valued data considers only the empirical frequencies observed for each bin
of theobserved histograms, losing, likein Rodriguez et al. (2000), theinformation rel ated
to the support. Ichino (2008, 2011) proposed a PCA of quantile representations of
symbolic data (they are particular transformations of the observed distributional data).
However, the author did not define the geometric properties of the decomposed covariances
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explicitly, and he did not give a suitable interpretation for the explained variability
on the factoria sub-spaces. Le-Rademacher (2008) proposed an extension of the
interval PCA for histogram-valued data (considered asweighted intervals). Inthis
case, the eigenvalues of the PCA decompose an inertia measure corresponding to
the sum of the variances of histogram-valued variables, as presented in Billard and
Diday (2006).

Finally, an extension of the interval PCA to include histogram variableswas
proposed by Makosso-Kallyth and Diday (2012); here, aPCA is performed on the
means of the histograms (similar to a centers PCA). Then, using the Tchebicheff
inequality, the histogramsaretransformed into interval sand projected on the space
spanned by the principal components. Unfortunately, the principal componentsare
related only tothe covariancesof themeansof the histograms. Morerecently, Wang
etal. (2014) proposed an adaptation of the previous methodsfor the PCA of normal
distribution-valued data.

All the above-mentioned methods do not explicitly require the definition of
ameasure of covariance between distributional variables in advance. Some basic
statistics for histogram variables were presented by Bock and Diday (2000) and
developed by Billard and Diday (2006). Recently, Verde and Irpino (2008)
proposed new variance, covariance and correlation measures for distributional
variables based on the 12 Wasserstein distance (Ruschendorf, 2011) between
distributions.

Both approaches show that the variability of adistributional variable can be
decomposed in several components: in the approach of Billard and Diday (2006),
the data variability is expressed in the part related to the location and in the part
related to the scale; althogh in the approach of Verde and Irpino (2008), the shape
of the observed distributions is also taken into consideration. In particular, the
results of Verde and Irpino (2008), consistent with the statistical modeling of the
quantile functions proposed by Gilchrist (2000), show that the analysis conducted
onempirical quantilefunctions(theinverseof thecumul ativedistributionfunctions)
has two main interpretative advantages. First, working directly on the quantile
functions associated with the empirical distributions, it isnot necessary to consider
aparametric hypothesisfor the distributions. Second, it is possibleto interpret the
contribution to theresultsrelated to the variability of thelocation, scale, and shape
of the distributions separately. More recently, Verde et al. (2016) proposed a PCA
method for asingledistribution variabl e using an approximation of theWasserstein
distance between distributions. Theideaisto represent the distributional variables
through aset of quantile variablesand thento apply the PCA to matrix of quantiles.
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The dataare not standardized, so theinformation about the several characteristics,
i.e., location, size, and shape of the distributions, isretrieved in the determination
of the new factorial axes. The results of the analysis provide an interesting
interpretation of the axes according to the different moments of the distributions.

Thepresent paper aimstouseMultiple Factor Analysis(MFA) toanalyzedata
that are described by a set of distributional variables. MFA has been introduced by
theworksof Escofier and Pagés (1983, 1988, 1990) (recent overviewsareavailable
in Abdi et al. (2013) and Pagés (2014)). MFA is an extension of PCA on sets of
variables (namely, blocks of variables), and it isone of the multi-tables techniques
(e.g., STATIS, Multiblock CorrespondenceAnalysis, SUM-PCA). MFA isconducted
intwo steps: first, it runsa PCA of each block of variables, and then, it normalizes
each block by the respective first singular value, so that the first principal
componentshavethe samelength. Second, it performsacommon representation of
the data sets, which is called a compromise or consensus representation. This
compromiseisobtained from a(non-normalized) PCA of atableobtained fromthe
concatenation of the normalized blocks of variables.

Here, we propose to apply an MFA to a transformation of distributional
variablesin sets of quantile variables. Each set of quantile variablesisrelated to a
distributional variableand itisablock of variablesinthe MFA. The peculiarity of
this approach comes in the decomposition of an approximation of the total
variability of the distributional data according to the squared ¢, Wasserstein
distance (seeVerde et a. (2016)). In thisway, we preserve the coherence between
the criterion optimized in the M FA and the distributional data space defined by the
12 Wasserstein metric. Finally, the proposal uses visualization and graphical
interpretative toolsto analyze the rel ationshi ps between distributions according to
their own characteristics, i.e., location, scale, and shape, on factorial planes.

Theremainder of the paper is structured as follows: Section 2 introducesthe
data and the Wasserstein metric between distributions. Section 3 presents the
extension of the MFA on quantile variables to analyze rel ationships between the
distributional variables observed on the same set of individuals. Section 4 showsa
new tool for the visualization of the distributional variableson thefactorial planes.
Sections 5 and 6 show the results of the applications on simulated and real data,
respectively. Section 7 concludes the paper.
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2. DISTRIBUTIONAL VARIABLES AND THE WASSERSTEIN DISTANCE

Let E be a set of n individuals described by a distributional variable Y, i.e., a
modal-valued variable with a numerical domain . = [min(Y),Max(Y)] C R. We
denote with y; (i = 1, ..., n), the realization of the variable Y for the i — ¢t/ individ-
ual (Verde and Irpino, 2008), expressed by a (empirical or estimated) probability
density function f;(y). We denote by F;(y) a cumulative density function (cdf) and
by F;"!(t) (for t € [0;1]) the corresponding quantile function (qf, i.e., the inverse
of the cdf). According to Gilchrist (2000), several advantages can arise by work-
ing with gfs rather than with the distribution functions: all the gfs have a finite
domain in [0; 1], the sum of quantile functions returns a gf, the product of a gf by
a positive scalar returns a gf, and under certain conditions, it is possible to define
the product between two ¢f's.

Several proposals have been formulated in the framework of SDA to define
univariate (mean, variance, and standard deviation) and bivariate (covariance and
correlation) statistics for histogram variables (Billard and Diday, 2006; Bock and
Diday, 2000). Recently, Verde and Irpino (2008) introduced new measures based
on the Wasserstein distance, which is a suitable metric to compare distributions.
An overview of the family of Wasserstein metrics is presented by Riischendorf
(2011); Villani (2003).

According to Riischendorf (2011), the £, Wasserstein distance between two
(univariate) distribution functions can be expressed as follows:

1

P

d, (y1,y) /!F —F (o) de (1)

where, p > 1, F; and Fy are cumulative distribution functions (cdf's) associated
with the y; and yy histograms, and Ffl and Fl.f1 are the corresponding quantile
functions (gfs). The ¢, squared Wasserstein distance, also known as Mallow dis-
tance (Riischendorf, 2011), between the gsf associated with two histograms is as
follows:

1
A2, (vi,yr) / F ()] dr. )
0

The ¢, Wasserstein metric can be considered a natural extension of the Euclidean
metric between quantile functions.

Thus, the Wasserstein distance can be suitably computed for equi-depth his-
tograms with a fixed number of bins equal to s. Given the histogram description
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i, this can be partitioned into s > 1 bins as follows:

vi={(i,m1i) ooy (Dniy i) 5 ooy (L i)

where [, = [Xhi;yhi] is an interval of R, and m,; > O such that Y3, m,; = 1. If y; is
an equi-depth histogram, then m,; = % The following quantities wy; represent the
cumulative weights associated with the elementary intervals of y(i):

0 1=0
wii = Y mu l=1,...,s - €)
h=1,..,l

For simplicity, we consider two equi-depth histogram descriptions y(i) and
y(') that have the same number of bins equal to s implying that the weights m;; =
Ty = Wi —Wi_1; = é In this case, being w;; = w7, we omit the second index.
The squared Wasserstein distance between two equi-depth histogram descriptions
is computed as follows:

d&V2<y,.,y,.,);:i / (F ()~ F (1) dr. “

Each couple (w;_j,w;) allows us to identify two uniformly dense intervals,
one for i and one for i/, having, respectively, the following bounds:

L= [F (wima)s )] = [y and
Ili’ = [F;Tl(Wlfl),F;/il(Wl)] = [Xli/;yli/]'

The center and the radius of each interval are computed as follows:

cii =, + /2 1=, +3)/2 for u=ii.

Because the histograms are equi-depth, all the 7; are equal to 1/s. The inter-
vals that are uniformly distributed can be expressed as functions of their centers
and radii. Hence, the equation (4) can be rewritten as follows:
1< 1
5 Y | (ei—ew)’ + 3 (= )’ |- o)

=1

d%vz i, yi) =

According to the Wasserstein metric, the mean histogram y, is defined as a
Fréchet mean by solving the following minimization problem:



Multiple Factor Analysis of Distributional Data 311

f () = argmin Y a5, i), (6)
i=1

which is expressed as follows:

1 1
Yo = (Clb—rlb;c1b+rlb),g Jeees (Csh—rsb;csb“'rsh)ag ;o (D

where:
1 < 1 <
eap=n"Y ci i rp=n"'Y
i=1 i=1

Therefore, the variance of the distributional variable Y, according to (6) and
(7), is defined as follows:

1
~ ns

n S 1
Y'Y | (ei—cw)? 3(m—rzb)2- (8)

i=11=1

In the next section, we will show that Var(Y) can be approximated by the
sum of the variances of the quantile variables of the distributional variable Y.

If histograms are not equi-depth, the computations are done in accordance
with Irpino and Verde (2014). In such a case, a homogenization step is requested
for comparing histograms through the Wasserstein distance. The support of the
distributional data is shared according to a set of quantile values corresponding to
the same set of density levels p; for all the distributions.

2.1. OTHER PROPERTIES OF THE ¢, WASSERSTEIN DISTANCE

The advantage of using the /¢, Wasserstein distance for comparing distribu-
tional data is related to the property that it satisfies: the squared distance between
two distributions can be decomposed according to the following three components
(as shown by Irpino and Romano (2007)):

[F'(t)—F, ' (1)] 2 dt =

1 ]

d‘%v(yiayi’) =
= (i — 1y)* + (01— 67)’ + 20300 (1 — pi) . )
—_— YV S——

Location Scale Shape

ST

Variability
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where U, and o, (with u = i,i’) are, respectively, the means and the standard
deviations of the distributions y; and yy, while p; s, is the Pearson correlation
coefficient between two quantile functions F; ' (¢) and F, ' (¢)

Therefore, p; 7 can be considered a measure of shape similarity of two dis-
tribution functions. In fact, p; = 1 only if the two distributions have the same
standardized quantiles (by the respective mean and standard deviation), which
occurs when the two distributions have the same shape.

The decomposition of the squared ¢/, Wasserstein distance between two dis-
tribution functions allows for the evaluation of their deviation in terms of location,
scale, and shape. The difference in location and scale is, respectively, expressed
by the squared Euclidean distances between the means and between the standard
deviations of the two distributions; while the difference in shape is related to the
value of p; 7. The scale and shape components express together the difference of
the variability structure between two distributions.

3. MULTIPLE FACTOR ANALYSIS ON THE QUANTILES OF DISTRI-
BUTIONAL VARIABLES

In this section, we present an MFA on a set of data tables containing the quantile
representation of several distributional variables observed on the same individ-
uals. MFA extnends PCA providing a set of common factors for projecting data
described by blocks of variables onto a compromise subspace (Escofier and Pages,
1983). The main idea is to extend the PCA methods for distributional data (Verde
et al., 2016) to the case of multi-tables analysis.

According to the PCA strategy on a distributional variable Y, distributions
are replaced by a set of predefined quantiles that are assumed to be values of the
variables of the analysis.

Let E be the set of p histograms y;; (for j =1,..., p) related to the descrip-
tion of the i —th individual w.r.t. the Y1,...,Y;...,Y, variables. Each y;; is the
histogram of values that the i — ¢/ individual assumes for the variable Y;. We
consider that all the histograms are equi-depth, so the bounds of the intervals
I = [Xli;yli] (forl =1,...,K; — 1), and they correspond to the K;-quantiles, i.e.,
the values that divide the distribution in K; equal parts). We have denoted by K;
the number of quantiles for each variable Y; that can be also chosen as different
for each of them (K ...K;...K)).

For the generic variable Y;, we denote it with the following:
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qi0,j = Xli,j = min(yij)v
qi; = Y, (forl=1,...,K;—1) and
disj = YK =Max(y; ;) Vi=1,...,n

To perform a PCA on quantiles, we consider the input a concatenation of
classic n x (Kj+ 1) data tables (with j = 1,..., p), denoted with Q; as follows:

Q=1[Qil-|Qj|-1Qp] (10)

Each row of the j—th table Q; is an individual representation expressed
by the following order statistics: the minimum value (or zero quantile) gjp; the
[-quantiles g;; and the maximum value or K; — th quantile, gix;.

The generic i — th individual (row) observed for the (single) distributional
variable Y} is described by a set of (K;+ 1) quantiles (columns): Qoj, ..., Qyj, - .-, Qk;;
with 1/K; probability, or the relative frequency of the observed values between
two consecutive quantiles.

q10,j 4q11,j --q1lj --- 4iK;,j
Q= gio,j qivj --Qilj - 4GiK;,j
n0j  Gnlj ---Gnlj - GnKg.j

We assume that the elements of the matrix Q; are centered by subtracting the
means of the respective quantile variables Q;; (for [ =1,...,K;).

For simplicity, we refer to the columns of the matrix Q; as centered quantile-
variables. The choice not to standardize the quantile variables preserves the ap-
proximation of the variance of a distributional variable based on the Wasserstein
metric by the sum of the variances of the quantile variables (as shown hereafter).
Particular care should be taken regarding to the lower and higher quantile vari-
ables. Indeed, the empirical evidence (see applications on simulated and real data)
reveals that those quantile variables may have a higher variability with respect to
the other ones. This can be checked before the analysis is performed. A practi-
cal solution is to consider the extreme quantile variables as supplementary in the
analysis or to give lower weights with respect to the other ones.

We denote by W the matrix of the individual weights; assuming that all of
them have the same weight, it is a diagonal matrix of elements %
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Moreover, we define the cross-product of quantiles matrix Q;, weighted by
W, as follows:

Si=QjWQ; (11)

where S; is the variance-covariance matrix of the quantile variables of Y;. Then,
the cross-product of the matrix Q, weighted by W, is as follows:

S=Q'Q=[Qi/..|Qj[.-|Q,) " W[Qi[..]Qj].-|Q,] = Y. QIWQ; = Y'S,. (12)
J J

The S is the block variance-covariance matrix of the quantile variables Q;;
(fOI‘l:0,...,5‘)OftheYl,...,Yj...,Yp.

The trace of the matrix S (denoted by Tr(S)) is equal to the sum of the vari-
ances of the quantile variables Q;; (denoted by Var(Q, j)) (for I =0,...,s and
j=1,...,p).

Now, we show the relationship between the usual ¢, Wasserstein metric used
in the analysis of distributional data and the criterion decomposed in the MFA.

Verde et al. (2016) showed that the trace of S; (denoted by Tr(S;)) approxi-
mates the variances of the distributional variable Y; (denoted by Var(Y;)), accord-
ing to the ¢, Wasserstein distance.

Denoted by A, the deviation is as follows:

A:Tr(Sj)—Var(Yj). (13)

p

This depends on the number of quantiles and on the number K; (with K = ) K})
j=1

of the intervals (bins) of the supports of the n histogram data, as follows:

n Kj . K; X 2 rf . 2
£ ¥ -rnet | () +
A="= .

n-K
with cfl.j =ci1,j —C1,j, Iy ; = ri1,j — I1,j» the rescaled center and radius on the re-

J
spective means.

3.1. THE TWO STEPS OF MFA

The MFA is performed in two steps.
The first step consists of a PCA on each data table Q;. The results are ob-
tained by the SVD decomposition, as follows:
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Q= UjAjVjT. (14)

subject to the usual ortho-normality constraints as follows
. — VIV, —
U;U;=V;V;=L
The factor scores are computed as follows:

¥ =UjA, (15)

where A; is the diagonal matrix of the eigenvalues of the matrix Q;.
In the MFA, each table Q; is normalized by the respective squared first eigen-
value A, j, corresponding to the highest value of A}, i.e., the following:

1
aj=— (16)
o
where 0 = 2,12]..
The aj for j=1,..., p can represent a system of weights for each matrix that

can be arranged in a diagonal matrix A, as follows:

A = diag{la 1y}, ,ajllg ), aple ]} (17)

where 1(x ) is a vector of ones, and Kj is the number of quantile-vectors of each
block matrix Q.

The second step of the MFA consists of a global PCA of the matrices Q;
normalized by the a;, which is done by considering the weights of the individuals
that are assumed to be all equal to % The matrix of the weights of the individual
is denoted as W.

In such a way, the MFA is equivalent to an analysis of the triplet (Q, W,A),
according to the classical definition of the French school (see Lebart et al. (2006)).

The eigensolutions can be obtained by a Generalised SVD of the matrix Q,
as follows:

Q=UAV' (18)
under the following constraints:

U'WU=VTAV =L (19)

Note that for simplicity, the eigenvectors’ and eigenvalues’ matrices are de-
noted with the same letters as in SVD.
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The factor scores of the single quantile vectors of Q; are computed as follows:

¥io=ajQjVa (20)

where v, is the eigenvector associated with the a — th eigenvalue (o = 1,...,L
where L is the rank of S).
The factor scores represent a sort of compromise for acommon representation
in a reduced subspace of the variability structure of the matrices Q; j =1,...,n.
The compromise factor score Wy, is the barycenter of the partial factor scores
obtained as the average of the p partial scores factors, as follows:

1
P, = ;Zan]Tva. (21)
J

The representation of the individuals (the rows of Qj) can be obtained ac-
cording to the classical biplot on the reduced subspaces, as follows:

1
Pjo = 7-a;Q)Uq- (22)
o

4. TOOLS FOR THE INTERPRETATION: THE SPANISH FAN PLOT

Starting from the results of the MFA, it is interesting the interpretation of the
proximities between the distributions according to the characteristics, i.e., loca-
tion, scale and shape, that have contributed more to the determination of the axes.

Indeed, in the determination of the factorial axes, the components related to
location, scale, and shape, into which the variance (based on the ¢, Wasserstein
distance) of the distributional variable Y can be decomposed, play a different role.
In fact, each factor axis is oriented toward the direction of the variability of the
means (location parameters), of the standard deviations (size parameters), and of
the skewness and kurtosis (shape parameters), respectively. Therefore, the advan-
tage of the proposed approach is its ability to interpret the axes according to the
different characteristics of the distribution-valued data. If an MFA is performed
on sets of four variables (namely, one set for for each distributional variable) rep-
resenting the first four moments of the distributions, the results are not so evident.

As in a classical PCA, the representation of the quantile-variables on the fac-
torial planes (e.g., the first plane for & equal to 1 and 2) is given by a circle of
correlation given by the quantile vectors. For improving the interpretation of the
plots, we connect the consecutive quantiles according to their natural order on the
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factorial plan. This results in a nice representation of the quantile-vectors that
looks like a Spanish fan. We call this representation a Spanish-fan plot. Each
Spanish-fan allows the analysis of the structure of global variability and the visu-
alization of the characteristics (variability and shape) of the distributional variable.
We observe that the quantile variables representation usually follows a kind of or-
der (being, in general, two consecutive quantile-variables more correlated w.r.t.
two non-consecutive ones). We can explain the pattern of the fan with respect to
the correlation (i.e., the angle) between two consecutive quantile-variables ¢g; and
qi+k (k=141,...,s). For example, it is interesting to observe that when the dis-
tributions are almost symmetric, the correlation between ¢; and ¢; decreases as
k(k=1,2,...,5s— [+ 1) increases. Thus, the shape of a Spanish-fan plot impacts
the interpretation of the factorial plans. When the distributions are different ac-
cording to their first four moments, we show that the first plane better explains the
variability of the locations and scales of the distributions: the more open the fan
is, the higher the variability of the distributions is; while the second factorial plane
(third and fourth axis) usually explains the variability in skewness and kurtosis of
the distributions.

Other typical measures, such as the relative contribution, denoted by cr, can
help interpret the axes. Similar to the classical PCA, the relative contribution of
the i —th distribution to the determination of the o — th axis is a measure of how
much the variance explained by the o —th axis is because of the [ —th quantile
variable.

Further, the quality of the representation of the individuals (distributions) and
of the quantile variables is measured by the absolute contributions, denoted by ca.
Similar to the classic PCA, absolute contributions sum to one for each distribution
(respectively, for each quantile-variable), and the higher the contribution is, the
better the distribution is represented on the axis (or on the plane, if we consider
the sum of ca’s of each axes of the plane).

5. AN APPLICATION OF THE MFA ON SIMULATED DATA

In this section, we present an application of the proposed MFA on simulated data.
For simplicity, we consider only two distributional variables. The simplicity of
the proposed application aims to highlight the power of the method, especially as
a visualization tool.

Recalling that the proposed MFA method provides the latent structure of the
quantiles for each variable according to the first four moments of the distribu-
tions, we consider two sets of histogram data observed for the same » individuals.
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Figure 1: Representation of the two sets of distributional variables
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Figure 2: Characteristics of the point distributions of thefirst distributional variableY,

The data related to the first quantile variable are sampled from Gaussian distribu-
tions with the same mean but different standard deviations; the second ones are
sampled from shifted and scaled Beta distributions. Ten histogram data for each
variable were generated as follows: one thousand values were sampled for each
distribution, and 19 quantiles are extracted, such that each bin, bounded by two
consecutive quantiles, contained 5.55% of the sampled values. In this case, it is
equivalent to set up an equi-depth histogram for each distribution that has 18 bins.
Using smoothed representations, the two configurations are shown in Fig. 1. The
box-plots of the sampled data for each distribution are represented in Fig. 2 and
Fig. 3, respectively.

A partial PCA is performed on each block of quantile variables related to Y
and ¥;. Qq and Q; matrices comprise 19 quantile variables (including the min
values), respectively. The quantile variables are centered w.r.t. the corresponding
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Figure 3: Characteristics of the point distributions of the second distributional variable Y,
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Figure 4: Representation of the quantile variables of Y, on thefirst factorial plan
(Explained inertia 99.98%)

mean values, but are not scaled.

In this first step, MFA decomposes the covariance matrices S; and S, re-
spectively. Consistent with the characteristics of the first distributional variable
Y}, the first latent factor is related to the variability of the standard deviations, as
observed in the two plots in Fig. 4. Indeed, although the correlation is not strong
with the central quantile-variables because all the Gaussians have the same mean
(and median), we note that the first axis is strongly correlated with the extreme
quantile-variables. Each distribution, suitably scaled horizontally and vertically,
is placed at the point related to the individual, such that the mean corresponds to
the abscissa of the point (right panel of Fig. 4). Following the first axis direction,
it is worth noting that the distributions are ordered from lower to higher values of
the standard deviations.
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Figure5: Representation of the quantile variables of Y, on thefirst factorial plan
(Explained inertia=100%)

The partial PCA on the second set of quantile-variables associated with Y,
is based on the decomposition of the covariance matrix denoted by S,. Figure
5 shows the representation of the variables by the Spanish-fan plot (on the left)
and of the individuals by overlapping the distributions (on the right) on the first
factorial plane.

Because the distributions are all skewed, the representation of the quantile-
variables on the first plane (which explains 100% of the total inertia, with the first
axis being 88.21%) is very different from the representation of the set of quantile
variables associated with Y;. Further, the shape of the Spanish-fan (the left panel
of Fig. 5), a scalene triangle, is related to the fact that all the distributions are
right skewed. Observing the representation of the individuals by their projected
distributions (on the right side of Fig. 5), it is worth noting that along the first
axis, the distributions are placed from the lower to the higher mean values (the
first value between brackets at the bottom of each distribution) while the second
factorial axis is the opposite(the second value between brackets).

The second step of the MFA is performed on the global matrix Q. Figure 6
shows a simultaneous representation on the first factorial plane of the Spanish-fans
of the two sets of quantile-variables (on the right side). The explained inertia of the
first two factorial axes is 90.2%. Because in the partial analysis the first Spanish-
fan of the set of quantile-variables in Q; was strongly related to the variability
component of the distributions (std), while the second Spanish-fan of the set of
quantile-variables in Q, was characterized by the values of the means on the first
axis and by the values of the std on the second axis, in the global analysis, the first
Spanish-fan plot appears rotated along the second dimension, which is related to
the variability of the distributions, whereas the first axis is influenced by the values
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of the means. This is also explained by the graphical representation (on the right
side of Fig. 6) of the correlations between the factorial axes of the partial analyses
and the ones from the global analysis.

The representation of the individuals on the first factorial plane is displayed in
Fig. 7. The points labeled by numbers are the projection of the individuals on the
first plane obtained with the MFA global phase. For interpreting the position of
the individuals on the factorial plane, the respective distributions of the variables
Y and Y, are projected in supplementary.

In Fig. 8, a different representation of the individual on the first factorial plane
is proposed. It is obtained by placing the distributions of each individual for the
two variables in the same location points but one on the top and one at the bottom.
This was possible because we had just two distributions for each individual.

Figure 9 shows the vectors corresponding to the two distributional variables.
The correlation between the synthesis of the two sets of quantile-variables is ex-
pressed by the cosine of the angle on the factorial plane, according to the clas-
sical measure RV proposed by Escofier and Pages (1988), which in this case is
RV =0.2257.
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3 T T T T
Min
2r . 4
X
" 16" Fact. 1 of Var.2
v b = sl ) according to the
- position
o .e S . H -
3 pr—

Fact. 2 of Var. 1
according to the,
position.

Axis 2 (38.06%)

Axis 2 (38.06%)
1
|
N

Fact. 2_ f Var. Fact. 1 of Var/1
according to the according tg/the

4+ MAX st. dev. st.dev,

3 2 -1 [ 1 2 3
Axis 1 (52.14%) Axis 1 (52.14%)

Figure 6: On theleft side: Representation of the quantile variablesof Y, and Y, on thefirst
factorial plan (Explained inertia=90.2%).
On theright side: Thecircle of correlations between the factorial axes of the partial analyses
and thefactor axes of the global analysis.
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Figure 7: Representation of theindividual distributionswith respect to Y, and Y, on thefirst

factorial plane (Explained inertia=90.2%). The distributionsare drawn on the
partial coordinates of individuals while the global coordinates of the individualsare
labeled by theintegers.
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Figure 8: Representation of theindividual distributionswith respect to Y, and Y, on thefirst

factorial plane (Explained inertia=90.2%). The distributions are drawn on the top
and bottom of the global coordinates of theindividuals.
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Figure 9: Correlation between the synthesis of the two sets of quantile-variablesas
expressed by thetwo vectorsVar1 and Var2. RV=0.2257.

6. AN APPLICATION OF THE MFA ON REAL DATA

In this section, we present an application of the proposed MFA on a dataset
described in (Billard and Diday (2006)). The dataset contains Cholesteral,
Hemoglobin and Hematocrit levels observed for 14 groups of patients (each group
isidentified by asex-agetypology) using histogramsof values. Thesizeand theraw
dataof eachgroup arenot availabl e, thusaclassical PCA isnot possible. Thedataset
is also available in the HistDAWass package? developed in R. The data table is
showninFig. 10. Theanalysisisperformed using 20 quantilesfor each histogram.
The MFA returns the components with their associated eigenvalues, as presented
in Tab. 1. We note that the first two components synthesize 96.16% of the total
variance, so we represent the main results using only the first factorial plane.

The variables are represented by Spanish-fan plots. Because each set of
guantiles defines ablock of variablesin the MFA, we show the correlation plot of
the Spanish-fans on the first factoria plane, which explains 92.54% of the total
inertia. In Fig. 11, we show the Spanish-fan plots, whilein Fig. 12, we observe the
correlation between the axes of each partial PCA and each variable.

2 https://cran.r-project.org/ web/ packages/ H st DAWAss/ i ndex. ht m
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Figure 10: The BLOOD dataset

Table 1: BLOOD dataset: eigenvalues of each component

Components Eigenvalue % of variance cum. % of variance
comp 1 2.28 71.55 71.55
comp 2 0.67 20.98 92.53
comp 3 0.12 3.63 96.16
comp 4 0.07 212 98.27
comp 5 0.02 0.58 98.85
comp 6 0.02 0.48 99.33
comp 7 0.01 0.25 99.59
comp 8 0.01 0.18 99.76
comp 9 0.00 0.13 99.89

comp 10 0.00 0.06 99.95
comp 11 0.00 0.03 99.98
comp 12 0.00 0.01 99.99

comp 13 0.00 0.01 100.00
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InFig. 11, we notethat the Hemogl obin and Hematocrit Spani sh-fansalmost
overlapwhilethe Spanish-fan of the Cholesterol variableisrather orthogonal tothe
others. Further, observing the spanning of the fans, it is worth noting that the
distributionsfor the Cholesterol level sarelessvariablein scal e (otherwise, the span
should be more open) than thoserel ated for the Hemogl obin and Hematocrit levels.
InFig. 12, weobservethat the MFA'sfirst axisispositively correlated with thefirst
axes of the partial analyses on the Hemoglobin and Hematocrit variables, while
Cholesterol presents a higher correlation to the second MFA axis.

Further the second axesof the partial analysespresent alow correlationonthe
MFA'sfirst plane. Looking at both figures, we note that the first axes of the three
partial analyses for each distributional variable, are oriented toward the direction
of the central quantiles; thus, they are mainly related to the variability of positions.
The other axesthat are related to the variability of scales and shapes are associated
with very small eigenvalues, thus, they poorly explain the variability of the
distributional data.

Therepresentation of individuals on the first factorial planeis performed by
projecting the original distributions as supplementary variables on the factorial plane.
The distributions are centred on the coordinates of each individual. To show the main
characteristics of the individuals according their distribution for each variable, Figs. 13,
14, and 15 show the distributions for the Cholesterol, Hemoglobin and Hematocrit
variables. Each plot isorganized such that on the left, individuals arelabeled according to
their name, while on theright, individuals are |abeled according to their mean value, and
the darker the distributions are, the higher their mean is. In thisway, Fig. 12, for each
distributional variable, shows that the first axis opposesdistributionswith lower and higher
mean val ues. Whereas the second axis opposes distributions according to lower and higher
vaues of the scale and shape parameters.
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Figure 13: MFA first factorial plane: Plots of individualsfor the Cholesterol variable, data
arelabeled with the object name on the left, and with the mean value on theright.
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Figure 15: MFA first factorial plane: Plots of individuals for the Hematocrit variable,
data are labeled with the object name on the left, and with the mean value on the right.

6.1 COMMENTS

Asexpected, being related to thequantity of ironintheblood cells, theHemoglobin
and Hemataocrit are positively correlated to each other, and their values are higher
in younger people. Cholesterol has alow correlation with the other two variables,
and its mean value tends to increase from younger to older people. For the other
scale and shape comparisons, there are very dight differences between the
distributions. Thus the analysisis only dightly influenced by those aspects. It is
possibleto comparethescal eand the shape of M-20and F-20 onthefactorial planes
for the Hemoglobin and Hematocrit variables, observing that on the top of the
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factorial plane, therearethedistributionswithlow valuesfor the standard deviation
and kurtosis (Tab. 2).

Table2: BLOOD dataset: kurtosis of each distribution computed asthe fourth
standar dized moment.

Objects Cholesterol Hemoglobin Hematocrit
ul: F-20 3.37 3.08 3.00
u2: F-30 3.23 4.10 2.72
u3: F-40 2.95 3.60 250
ud: F-50 3.18 2.81 251
u5: F-60 2.65 2.77 2.58
u6: F-70 2.65 2.91 2.61
u7: F-80+ 3.04 2.72 2.73
u8: M-20 2.85 2.14 1.96
u9: M-30 3.16 2.83 273
ul0: M-40 2.83 261 2.66
ull: M-50 2.74 3.44 2.49
ul2: M-60 3.37 2.34 2.63
ul3: M-70 1.92 2.37 1.86
uld: M-80+ 2.56 242 1.94

7. CONLUSIONS

Thispaper representsan extension of the MFA for aPCA method for distributional
data based on the /., Wasserstein distance between distributions. We showed that
the trace of the covariance matrix of the quantile-variables approximates the
varianceof adistributional variablecomputed withtheWasserstein metric. Previous
approaches were not related to a particular metric between distributions; thus, a
comparison could not be performed. Using quantile-variabl es, we observed that the
proposed PCA enables usto identify the differencesin the structure of the several
sets of variables in the analysis according to the main characteristics of the
distributional variables: position, scale, and shape. The classical MFA on standard
data was enriched by the nature of the analyzed data. The characteristics of the
observed distributions are emphasi zed by the peculiar tools for the interpretation.
Further, anovel Spani sh-fan plot wasintroduced to describetherel ationsamongthe
quantile-variablesprojected onthefactoria planes. We showed how tointerpret the
shape of afan with respect to the characteristics of the distributions. Therefore, the
similarity between the distributions (individualsinthe analysis) iswell interpreted
according to the similarity between their parameters on each axis. The proposed
applicationson simulated and real datahaveshownhow eachaxisisstrongly related
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tothevariability of the parametersof position, scal e, and shape. Aiming to show the
advantages of the method and giving more readable factorial planes, only afew
distributional variables were considered in the applications.
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