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Abstract. In the present article, we present a method of statistical inference for Geometric
Data Analysis (GDA) that is not based on random modeling but on a combinatorial
framework, that highlights the role of permutation tests. The method is applicable to any
IndividualsxVariables table, with structuring factors on indi-viduals, and numerical
variables possibly produced by a GDA method. We develop procedures dealing with the
typicality of a subcloud with respect to an overall cloud of individuals, which is the
generalization of the test—values to the multidimen-sional case in a combinatorial
framework. We outline the geometric interpretation of the observed p—value and study a
compatibility zone (confidence zone). We pro-pose exact and approximate solutions. The
method is applied to data from medical research on Parkinson’s disease.

Keywords: Geometric data analysis;, Combinatorial inference; Permutation tests, Case
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1. INTRODUCTION

In the present article, we outline statistical inference procedures for Geo-
metric Data Analysis (GDA) that are based on a combinatorial framework,
and that highlight the role of permutation tests. The methods relate mainly
to studying a Fuclidean cloud, that is, a family of statistical observations
conceptualized as points in a multidimensional space.

Permutation tests were initiated by Fisher (1935) and Pitman (1937),
then further developed by Pesarin (2001), Edgington (2007), Good (2012)
and others. Because permutation tests are computationally intensive, it
took the advent of powerful computers to make them practical and, thus,
it is only recently that they are really used. Permutation tests generally
consist of three types: exact, resampling, and approximate tests. In an ez-
act test, a suitable test statistic is computed on the observed data; the data
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are “permuted” in all possible rearrangements of the objects considering
the structure of the data, and the test statistic is computed for each rear-
rangement. The exact p—value is the proportion of rearrangements whose
test statistic values are as extreme as or more extreme than the observed
one. When the number of permutations is too large, we use a Monte Carlo
method by selecting a random subset of all the possible rearrangements of
the data and the p—value is calculated from the subset. Another alternative,
for large data sets, consists in an approximate test by replacing the discrete
distribution of the test statistic by a classical distribution.

A lot of statistical inference work —generally using assumptions like
homoscedasticity, normality, random sampling, etc.— has been done not
only in multivariate statistics in general, but also in Correspondence Anal-
ysis (CA)2. To name a few references: Lebart (1976), Gilula and Haberman
(1986), Saporta and Hatabian (1986), Daudin et al. (1988), Gifi (1990),
Le Roux and Rouanet (2004, 2010), etc., not to speak of the work done in
traditional Multivariate Analysis and directly applicable to GDA, such as
Anderson (1963) or Rao (1964).

The paper is organized as follows. Firstly, we introduce the typicality
problem. Secondly, we deal with the exact test of typicality and the ap-
proximate one. Thirdly, we give some results for the unidimensional case.
Finally we apply the method to a research case study, namely an experi-
mental research on Parkinson’s disease.

2. THE TYPICALITY PROBLEM

We will now present typicality situations and characterize the typicality
problem.
Consider the following situations.

e Committee. Among the members of a club, a committee is ap-
pointed. Can the committee be declared to be atypical of the club
with respect to the average age, the sex ratio, etc.?

e Gifted children. In a follow—up study on five gifted children, a
psychologist found that for a certain task the mean grade of the group
is 20, whereas, for a reference population of children of the same age,
the mean is known to be 15 and the standard deviation 6.

2 Benzécri has constantly insisted on the inductive logic embodied in CA; and in Benzécri &
a (1973, Vol 2), thereis an entire chapter (pp. 210-230) on inferencein CA.
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Is the psychologist entitled to claim that the group of gifted children
is, on average, superior to the reference group of children?

e Parkinsonian patients. In an experiment on the gait of Parkinso-
nian patients, there are two groups of subjects: a reference group of
healthy subjects and an experimental group of Parkinsonian patients
observed after drug intake. For every subject, variables pertaining to
gait were recorded. The question is:

Is it possible to assimilate patients after drug intake to healthy sub-
jects?

This example will be discussed in detail in Section 5.

The preceding situations exemplify what we call typicality situations.
In such a situation, there is a given group of observations and also a known
reference population®. Some statistic is considered such as the mean of a
variable of interest, the distance between mean points, etc. Intuitively, the
problem can be formulated as follows:

“Can the group of observations be assimilated to the reference popula-
tion? Is it typical of it?”, or more specifically “How can a typicality level
be assessed for the group of observations with respect to the population, ac-
cording to some statistic of interest?”

In typicality situations, it is tempting to do a significance test. Yet of-
ten, the conventional statistical framework is not valid, since no randomness
is assumed in the data generating the process. Even for a random sample,
typicality may be raised as an issue that is perfectly distinct from random-
ness. In order to offer a solution to the typicality problem, the basic idea
is to compare the group of the observations to the samples of the reference
population, where samples are simply defined as subsets of the reference
population.

In this paper, starting with a data cloud (descriptive phase), we proceed
to the inference phase, dealing with the problem of typicality of clouds*. The
methods are applicable to any cloud constructed from an Individuals x Varia-
bles table with structuring factors on individuals (Le Roux, 2014b); the
variables can be numerical, or provided by any GDA method (Principal

3 In the context of finite sampling, population will always refer to a finite set of statistical
individuals.

4 Most of the results of this paper are drawn from the PhD dissertation by S. Bienaise (2013,
Chapter 3); see also Le Roux et a. (2018, Chapter 3)
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Component Analysis, Correspondence Analysis, Multiple Correspondence
Analysis, etc.).

3. TEST OF TYPICALITY

Let us consider a set I of N individuals constituting the reference population
and a set C of n (1 <n < N) individuals constituting a group of obser-
vations (C' can be a subset of I or not). The set I is represented by a cloud
of N points in a multidimensional Euclidean space, called reference cloud
and denoted M!, whose mean point is denoted O. Similarly, the set C' is
represented by a cloud of n points, denoted MY, whose mean point is C.

Actually, the study will be done in the affine support of the cloud or in
a subspace of the affine support of the cloud. For instance, in GDA we will
often study the cloud in the subspace of the first principal axes.

Without loss of generality, we will suppose that the affine support is
referred to an orthonormal Cartesian frame with origin—point O (the mean
point of the reference cloud). In this frame, the covariance structure of the
reference cloud is simply defined by its covariance matrix, which we denote
V, and which is invertible.

3.1. PRINCIPLE OF THE EXACT TEST

To answer the question, in a combinatorial framework, we construct the
typicality test as follows.

1. Sample set. A sample is defined as an n—element subset of the referen-
ce population (“samples” in a purely set—theoretic sense). The set of
all (JTY ) n—element subsets defines a sample set. Let J be the set
indexing the samples and I; the subset of the n individuals of sample

7

2. Sample cloud. A subcloud (Mi)igj is associated with each sample
j; its mean point is denoted H7, with H/ = Y M?/n. The cloud of
i€l
the mean points of the (]T\Z ) subclouds is called the sample cloud and
denoted H” = (H7);c; (see Figure 3, for the Parkinson Study).

3. Test statistic. Then we choose a test statistic that is an index of
magnitude of the deviation between the points of the sample cloud
and the mean point of the reference cloud, namely the origin—point
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O. This index —as is commonly done in multivariate analysis— is
the Mahalanobis norm® of deviations with respect to the covariance
structure of the reference cloud; it will be denoted D?.

Let y; be the column-vector of the coordinates of point H7, the
squared Mahalanobis distance between the point H? of the sample
cloud and the mean point O of the reference cloud is equal to y;»rV_lyj
and termed D?(j).

We denote ngs the value of this statistic for the group of observations,
that is, the Mahalanobis distance between the mean point C of the
cloud M® and the mean point O of the reference cloud M’: one has
ngs = ygV_lyC where y¢ denotes the column—vector of coordinates

of point C.

4. The p—value of the test. The proportion of samples j € J such that
D?(j) > D%, defines the p-value of the test.

5. Conclusion. We state the conclusion of the test:

If the p—value is less than or equal to a conventional level o, the devia-
tion from point C to point O will be said to be statistically significant
(in a combinatorial sense) at level a.

If the p—value is greater than «, the deviation from point C to point
O will be said to be not significant at level a; points C and O will be
said to be compatible at level a.

The p—value can be taken as defining the level of typicality of the group
of observations with respect to the reference population, for the Mean Point:
the smaller the value of p, the lower the typicality.

Properties of the sample cloud. The two following properties® are the
generalization to multidimensional data of the ones of the classical theory
of sampling in a univariate finite population.

Property 3.1. The mean point of the sample cloud is the mean point of
the reference cloud.

5 In multivariate analysis, it is usual to consider the statistic yTsly, where S = %V is
the covariance matrix corrected by the number of degrees of freedom.
6 Proofs of these sampling properties for acloud are given in Bienaise (2013, pp. 52-53).
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Property 3.2. The covariance matriz of the sample cloud, denoted W, is
proportional to that of the reference cloud:

N —n
X

1
W= — AY
n N-1

Property 3.3. The squared Mahalanobis distance between every point H7
of the sample cloud and point O is less than or equal to %

Vj e J, D2(j) < Mo

Proof. Given j € J, let D be the line going through points O and H7. If D2 (i)

denotes the squared Mahalanobis distance between point O and the projection of

point M* on line D, one has Y D2 (i)/N = 1, since the “Mahalanobis variance” of
i€l

cloud M is equal to 1 along all the directions of the affine support of the cloud.

On line D, the between—variance of the partition of cloud M! into two subclouds

(M%)icz; (whose mean point is HY) and (M');¢;, is equal to 52-D?(j). The

within-between decomposition of variance leads us to Y- D?(i)/N = 2—-D?(j) +
i€l

within-variance, hence Nl'in D2 (]) <1.

Geometric interpretation of the p—value. Recall that (see Cramér,
1946, p. 300) the principal k—hyperellipsoid of a cloud is defined as the set
of points such that the Mahalanobis distance to its mean point is equal to .
Hence, the p—value of the typicality test can be interpreted as the proportion
of points of the sample cloud H” located outside or on the hyperellipsoid of
the reference cloud going through point C (see Figure 3).

3.2. COMPATIBILITY REGION

The typicality test can be applied to every sample of the reference popula-
tion viewed as a particular group of observations. For any specified «, the
test will separate out those samples that are atypical at the a—level. The
fundamental typicality property states that the proportion of these samples
is at most o — “at most” rather than “equal to”, owing to the discreteness
of the sampling distribution of D?.

Now our concern is to find a region of compatibility around point C.
For this purpose, given any point P in the space, we consider the cloud P/,
which is the image of cloud M! by the translation of vector v = P — O
(deviation from point O to point P). Cloud P! has the same covariance
structure as the cloud M/, then the Mahalanobis distances attached to
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clouds M! and P! are the same. Taking now cloud P! as a reference cloud,
we construct the sample cloud Hl‘i, which is the translation of cloud H”
by vector u = P — O. The mean point of this cloud is P, its covariance
matrix is W and Vj € J, D3(j) = D?(j) (since the translation implies that
i} — P =H -0).

Considering every cloud P! as a reference cloud, we say that point P
is compatible with point C at level « if the corresponding p—value is greater
than a. Hence the following definition.

Definition 3.1 (Compatibility region). The 1 — « compatibility region is
the set of points P for which the proportion of samples j € J such that
D3(j) > DE(C) is greater than a.

Remark. From the property D3(j) = D?(j), one deduces that the pro-
portions of points H{) whose squared distance D3(j) (distance to point
P) is greater than D2(C) is equal to the proportion of points H/ whose
squared distance D?(j) (distance to point O) is greater than D3(C), with
D2(C) = (yc —yp) V'l(yc — yp), yp being the column-vector of coor-
dinates of point P.

Lemma 3.1. Given two points P and Q at the same Mahalanobis distance
k from point C, the proportion of samples j € J such that D%)(j) > D%(C)
1s equal to the proportion of samples j € J such that Dé(j) > Dé(C).

Proof. The translation of the x-hyperellipsoid of the reference cloud M! such

that its center is point C writes (y —yc)' V~!(y —yc) = 2. Points P and Q

belonging to this k—hyperellipsoid verify D2(C) = Dé(C) = k2. The proportion

of points Hfg such that D%(j) > k2 is equal to that of points H{; such that
D3(j) > w2, since, by construction, Vj € J, D3(j) = D*(j) = Dg(j)-

From this lemma, we deduce the following property.

Property 3.4. Let k2 be the mazimum value of (D?(j))jes for which the
proportion of j € J werifying D*(j) > k2 is greater than a. The 1 — «
compatibility region for point C is defined as the set of points P whose Ma-

halanobis distance to point C is less than or equal to k.

Geometrically, the 1 — a compatibility region for point C' is the set of
points inside or on the k. hyperellipsoid of cloud M.
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3.3. APPROXIMATE TEST

Let r denote the dimension of cloud M’ that is, of its affine support. When
N and n are both large, the sample cloud HJ (with ( ) points) can be
fitted by an r—dimensional normal distribution whose center is the origin—
point O and whose covariance matrix is W = % X N_” x V. Therefore
the distribution of y' Wty is a x? distribution with r degrees of freedom,
denoted x? and the distribution of the test statistic n x % L D? can be

approximated by x2.

e The combinatorial p—value can be approximated by
P=p(x7 2 nx = x D3,)

e Let us denote x2[a] the critical value of the chi-square distribution
with r d.f., at level «, that is, p(x2 > x2[a]) = . The 1 — o approx-
imate compatibility region is the set of points P for Which the Maha-

lanobis distance to point G is less than &, with 72 = 1 x 222 xy2[a].

Remark. Nowadays it is possible to perform exact combinatorial tests
using the enumeration of all samples as soon as their number is not too
large (say < 1,000,000). Most often, the cardinal of the sample space
is too large to enumerate all its points. According to many authors,
we can inspect this sample space by using a Monte Carlo method, that
is, by resampling algorithm from the sample space’. In this case we
also use a hat, as in p, to indicate an estimate when referring to a
Monte Carlo estimation. In any case, the approzimate test provides
an order of magnitude of the p—value and of the compatibility region.

4. PARTICULAR CASE: UNIDIMENSIONAL CLOUD

The preceding test can be applied as is to a unidimensional cloud but it
leads to a two—sided test. By choosing another test statistic, namely the
difference of means, we will be able to conclude by taking into account the
sign of the difference (Le Roux, 1998).

The pertinent data are:

1. areference population I of size N with which is associated a numerical
variable 2! = (2%);c; with mean Z and variance v;

Because of increasing computing power, by 2010, p—values based on exact enumeration
sometimes exceeded 10,000,000 samples. A number of 1,000,000 resampling is not only
recommended but common (Johnston et al., 2007).
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2. a group of observations of size n whose observed mean is denoted m ;-

Exact p—value. The steps of the test are the following ones:

1. Construct the sample space, that is, the set J of all (]X ) n—elements
subset of I: (I;);eJ;

2. Choose a test statistic, for instance the mean, and associate with each
sample j the value of the statistic, here the mean m/ = Y x%/n.
i€l
3. If myps > T, consider the samples whose means are greater than or
equal to mgps; the proportion of these samples defines the observed
upper level (one—sided p—value) of the test.

This proportion will be taken as defining the level of extremality (or
level of typicality) for the mean, with respect to the reference population (on
the positive side). The smaller the value of p, the lower the typicality. For
any conventional level o, if p < a;/2 the group of observations is declared to
be atypical (on the positive side) of the reference population with respect
to the mean at level a/2.

When mys < T, the observed lower level will be considered similarly
and the typicality level defined accordingly.

Compatibility interval. As for a multidimensional cloud, given a €IR,
we consider the “shifted cloud” associated with the variable y! = (2 +a)icr
whose mean is ¥ = T + a and whose variance is v.

Given «, the mean of y! is said to be compatible with mgps at level a
if it is not atypical. The 1 — « compatibility interval is defined as the set
of means y compatible with m. It is easily shown that it is equal to

[mobs - (moz - E) 5 Mobs — (ma - E)]

where M, (resp. m,) is the greater (resp lower) value m/ for which the
proportion of samples j verifying m’/ > m, (resp. m/ < m,) is greater
than a/2.

Approximate p—value. After the classical theory of sampling in a finite

population, the mean of the statistic Mean is equal to T and its variance
tO N—n
N—1

x = (see Cramér, 1946, p. 523). Consider now the scaled deviation
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between means. We denote this statistic by Z and its observed value by

Zobs = "]l\;’fisi Both test statistics (i.e., Mean and Scaled deviation) lead
N-1%n

to the same p—values: they produce equivalent tests.

When n and N —n are both large, the Mean is approximately normal so
that the variable Z is approximately normal A'(0,1). Then, for zys > 0, the
approximate p—value is equal to the proportion of the normal distribution
greater than z.s (observed upper level).

Remark: zyps is also called test—value (see Lebart et al., 2006). The observed

value ng is its multivariate generalization.

S

Approximate compatibility interval. If Z is distributed A/(0,1) and
if z[a] is such that p(|Z| > z[a]) = «, the 1 — « approzimate compatibility
interval is:

{m—z[a] PR X Ly m+ z[a] /522 x %}

Particular case of Multiple Correspondence Analysis. Let us take
as a “reference population” the projected cloud of the N (active) individuals
onto principal axis ¢ (with mean 0 and variance )), and as a group of
observations a set of individuals of size nj associated with a category k.
The mean of coordinates of individuals of the group on axis ¢ is denoted y’g
and the coordinate of the category—point k is denoted yéf, with yf = y@f/\/A_g
(see Le Roux and Rouanet, 2010, p. 45).

To study the typicality of class k (for the mean), we can take as a test
statistic the scaled deviation Z whose observed value is (see Le Roux, 1998):

Zobs = (yf/\/)\—f)\/ ng X jfrv__nlk = \/myéC \/ 1{kfk = mCOS Ore

where cos 0y is equal to the coordinate of k on axis ¢, namely yf, di-

vided by the distance between the category—point and the origin, namely

V (fx/(1 — fx)); the square of cos 8y is the quality of representation of cat-
egory k on axis /.

5. THE PARKINSON’S STUDY

To present our strategy we will use a study about Parkinsonian patients’
gait. The design of the experiment was as follows (Ferrandez and Blin,
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1991): there were two groups of subjects, namely a reference group of 45
healthy subjects, observed once, and an experimental group of 15 Parkinso-
nian patients observed twice, before and after drug intake (L-Dopa). Six nu-
merical variables pertaining to gait were recorded, namely Velocity, Length
of Stride, Swing Duration, Stride Duration, Stance Duration, and Double
Support Duration.

An extensive geometric descriptive analysis was done by Le Roux (2014a,
pp.347-361). In the present paper, the descriptive analysis will be summa-
rized, and we will concentrate on inferential analyses for comparing patients
after drug intake to healthy subjects.

5.1. CLOUDS CONSTRUCTED BY PRINCIPAL COMPONENT
ANALYSIS

A standard Principal Component Analysis (PCA)® is performed on healthy
subjects’ data, putting the patients’ data as supplementary elements. The
PCA reveals that the cloud is nearly two—dimensional reflecting dependencies
in the definition of variables as well as in the data themselves. The first two
axes account for 97% of the variance of the cloud. In addition, the quality
of representation of healthy subjects in plane 1-2 is quite good: it exceeds
.84 for 38 subjects, and goes below .50 for only three of them (who are
near the mean point) and that of patients is very high (all are above 0.88).
Therefore, the projections of clouds on the first principal plane will make
up the basic data set. The two—dimensional representation of the cloud of
the 45 healthy subjects (gray points), together with that of the 15 patients
after drug intake (black points), are shown in Figure 1. The axes are the
principal axes of the cloud of the healthy subjects, and the origin—point is
its mean point (denoted O). The variances of the first two principal axes
(eigenvalues) are A\; = 3.9927 and Ay = 1.8224.

The first principal axis can be interpreted as a performance axis, that
is, the performances increase from left (poor) to right (fair); and the second
axis as a style axis, that is, for an equal performance, Length of Stride is
longer above and shorter below.

All procedures presented in the sequel can be visualized in Figure 1,
which will provide an intuitive guide throughout the section.

8  Sincethe six variables are not on acommon scale, a PCA of correlations is performed.
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Figure 1: Plane 1-2. The cloud of 45 healthy subjects (gray circles) with itsmean
point O and the cloud of 15 patients after drug intake (black circles) with its mean
point C.

Descriptive findings

The following findings emerge from the PCA.

1. On the whole, performances are poorer for patients, that is to say,
most patient points lie on the left side of Figure 1.

2. The mean point of patients after drug intake (point C) still lies on the
left side of Figure 1 and remains quite distant from the mean point of

healthy subjects (origin point O).
5.2. TYPICALITY TEST FOR PLANE CLOUDS

In the sequel, we will compare patients after drug intake with healthy sub-
jects (reference population) by using combinatorial typicality test to estab-
lish the existence of a difference between the two mean points O and C.

The question is:

Is it possible to assimilate patients after drug intake to healthy
subjects?
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The effect of interest is the deviation between the two mean points O
and C, namely the geometric vector C—0 with coordinates (—1.057; —1.663).

The covariance matrix of healthy subjects (reference cloud referred to its
principal axes) is the diagonal matrix of eigenvalues. Hence, the magnitude
of the observed effect is:

_ 1
b2 ( 1.057) <3.9927 0 ) (—1.057 —1.663 ) = 1.798
-4 1.82237
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Figure 2: Cloud of the 45 healthy subjects (refer ence cloud) with its concentration €ellipse
(k = 2) and cloud of the 15 patients after drug intake with its mean point C, in plane 1-2.

Descriptively, we conclude that the deviation between patients after drug
intake and healthy subjects is of large magnitude.

We will now attempt to evaluate the atypicality of the group of Parkin-
sonians by performing the typicality test.

The number of possible samples is equal to the binomial coefficient
(‘fg) = 3.44 x 10'*. This number is too large to construct the whole set of
possible samples. So we use the Monte Carlo method in order to generate
a subset of possible samples (see Figure 3).

Figure 4 shows the distribution of the statistic D? based on 500,000
resamples.
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Figure 3: Sample cloud (5,000 points of the sample cloud) and principal ellipse of the
reference cloud going through point C.

Density of proportions

0 T T T f T f D?

Figure 4: Distribution of test statistic D? (based on 500,000 samples among the (§%) possible
samples); observed value D3 =1.798.

Among the 500,000 resamples, no mean point of possible sample clouds
is found outside of or on the ellipse of the cloud of the healthy subjects
going through point C, hence p = 0/500,000. We can conclude that the
group of patients after drug intake is atypical of the reference population
and say that:

The data are in favor of a difference between patients after drug intake
and healthy subjects (p < 0.001).

Compatibility region

We will determine the 95% compatibility region, that is, the set of points
that are compatible with point C. This region is depicted in Figure 5: it
is delineated by an inertia ellipse of the cloud of the healthy subjects with
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k = 0.514 which is translated so that its center is point C. The mean point
O of the healthy subjects is outside the ellipse: the group of patients after
drug intake is atypical of the reference population at level .05.

Moreover the compatibility ellipse being located in the South-West
quadrant of Figure 5, all points in the other three quadrants lead to signifi-
cant results: the patients cannot be assimilated to healthy subjects, as they
are less performant and make smaller steps.
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Figure 5: Cloud of the 45 healthy subjects (reference cloud) with its
concentration ellipse (dashed line; x = 2) and cloud of the 15 patients
after drug intake with its mean point C and the .95%—compatibility
region (x = 0.514).

Approximate test

One has ngs = 1.798, hence p = p(x3 > 15 x % x 1.798) = 2.57 x 1079,
The approximate observed level of the test is near 0, hence we have the
same conclusion as for the exact test. One has x3[.05] = 5.991 hence the

compatibility region at level @ = .05 is defined by the k—ellipse with k =

5.991 x % X 4455:115 = 0.522. The approximate compatibility region is

somewhat larger than the exact one (0.522 > 0.514).
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5.3. TYPICALITY TEST FOR PERFORMANCE AXIS

The question is: Are patients after drug intake atypical of healthy subjects
as far as performance is concerned?

Figure 6 shows the cloud of the healthy subjects (grey points) and that
of the Parkinsonian patients (black points) on the performance axis.

The mean performance of the healthy subjects is 0 and the variance
is the eigenvalue, that is, 3.993. The mean performance of the patients is
—1.057, and the scaled deviation between means is —1.057/4/3.993 = —0.53,
hence the descriptive conclusion:

The mean performance of patients after drug intake is inferior to that
of healthy subjects, and the difference is large.

standard deviation

0o o B88 8 BleBooood 8% o
I s JEREI

Figure 6: Reference cloud of healthy subjects (grey points) and observed
cloud of patients (black points) on the performance axis.

+ + + M

-1 0 1

Figure 7: Distribution of test statistic M based on 500,000 samples,
observed value m,; = —1.057.

There are 3,045 resamples over 500,000 that have a mean that is superior
or equal to the observed one, hence p = .006. The 95% compatibility interval
is [-1.89; —0.22].

The mean performance of patients after drug intake is significantly
lower than that of healthy subjects.
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6. CONCLUSION

The typicality test presented in this paper deals with Fuclidean clouds.
Our example shows the case of a cloud constructed by PCA, but all other
methods can be used: examples using MCA can be found in in Bienaise
(2013, Chapter 3) or in Le Roux et al. (2018, Chapter 7).

Here, we took a test statistic linked to means, but it is possible to choose
any statistic of interest (e.g. variance of clouds). Permutation remains the
method of choice to test novel or other statistics whose distributions are
poorly known.

Combinatorial inference provides an efficient approach to testing when
the data do not conform to the distributional assumptions of the statis-
tical method one wants to use (e.g. normality). Furthermore, results of
permutation are valid with observations that are not a random sample of
some statistical population. Unfortunately, it is generally difficult for per-
mutation tests to express power functions in closed form, useful for explicit
calculations (see e.g. Pesarin, 2001, p. 63-66). In the combinatorial typical-
ity test, the reference population is known, so we feel it would be preferable
to consider compatibility regions.

The combinatorial inference can be used for addressing many questions
as, for instance: comparing groups of individuals, studying the correlations
between variables, interactions between factors, etc. In each case, according
to the question under study, we have to choose a “permutation system”
in order to construct the “permutation space” and the distribution of the
statistic of interest.

Nowadays, the speed of computers makes it possible to perform any
statistical test using the permutation method. The chief advantage is that
one does not have to worry about distributional assumptions of classical
test procedures; the disadvantage is the amount of computer time required
to perform a large number of permutations, each one being followed by
computation of the test statistic. This disadvantage vanishes as computer
science evolves, especially through the parallelization of algorithms.
Software. All computations have been worked out with Coheris-Spad soft-
ware’ by including specific routines for the typicality tests that we wrote
in R language. The SPAD project with the R scripts!? is available from
authors.

9 The softwareis distributed by Coheris (www.coheris.com).
10 R Core Team (www.R-project.org): alanguage and environment for statistical computing.



348 Bienaise S, Le Roux B.

REFERENCES

Anderson, T. (1963). Asymptotictheory for principal component analysis. TheAnnal sof Mathematical
Statistics, 34(1):122-148.

Bienaise, S. (2013). Méthodes d’ inférence combinatoire sur un nuage euclidien/Etude statistique de
la cohorte EPIEG. PhD thesis, Université Paris Dauphine, CEREMADE.

Cramér, H. (1946). Mathematical Methods of Satistics. Princeton: Princeton University Press.

Daudin, J.-J., Duby, C. and Trecourt, P. (1988). Stahility of principal component anadysisstudied by the
bootstrap method. Satistics: A Journal of Theoretical and Applied Satistics, 19(2):241-258.

Edgington, E. (2007). Randomization Tests. London: Chapman & Hall/CRC, 4th edition.

Ferrandez, A.-M. and Blin, O. (1991). A comparison between the effect of intentional modulations
andtheaction of L-Dopaongaitin Parkinson’ sdisease. Behavioural Brain Research, 45:177—
183.

Fisher, R. (1935). Thefiducia argument in statistical inference. Annals of Eugenics, 6(4):391-398.
Gifi, A. (1990). Nonlinear Multivariate Analysis. Chicester: Wiley.

Gilula, Z. and Haberman, S. (1986). Canonical analysis of contingency tables by maximum
likelihood. Journal of the American Statistical Association, 81(395):780-788.

Good, P. (2012). A Practitioner’s Guide to Resampling for Data Analysis, Data Mining, and
Modeling. London: Chapman & Hall/CRC.

Johnston, J. E., Berry, K. J. and Mielke, P. W. (2007). Permutation tests: precision in estimating
probability values. Perceptual and Motor Skills, 105(3):915-920.

LeRoux, B. (1998). I nférence combinatoire en analyse géomeétrique des données. Mathémati ques et
Sciences Humaines, 144:5-14.

Le Roux, B. (20148). Analyse Géométrique des Données Multidimensionnelles. Paris: Dunod.

LeRoux, B. (2014b). Structured dataanalysis. InBlasius, J. and Greenacre, M ., editors, Visualization
and Verbalization of Data, pages 185-203. London: Chapman & Hall.

Le Roux, B., Bienaise, S. and Durand, J.-L. (2018). Combinatorial Inference in Geometric Data
Analysis. London: Chapman and Hall/CRC.

Le Roux, B. and Rouanet, H. (2004). Geometric Data Analysis. From Correspondence Analysisto
Sructured Data Analysis. Dordrecht: Kluwer.

LeRoux, B. and Rouanet, H. (2010). Multiple Correspondence Analysis, 163. QASS. CA, Thousand
Oaks: SAGE Publications.

Lebart, L. (1976). Thesignificanceof eigenval uesissued from correspondenceanalysis. |nProceedings
in Computational Statistics, Physica Verlag, Vienna, pages 38-45.

Lebart, L., Morineau, A. and Piron, M. (1995/2006). Satistique Exploratoire Multidimensionnelle.
Paris: Dunod.

Pesarin, F. (2001). Multivariate Permutation Tests: with Applications in Biostatistics. Chichester:
Wiley.

Pitman, E. J. (1937). Significance tests which may be applied to samples from any populations.
Supplement to the Journal of the Royal Satistical Society, 4(1):119-130.

Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research.
Sankhya: The Indian Journal of Statistics, Series A, pages 329-358.

Saporta, G. and Hatabian, G. (1986). Régions de confiance en analyse factorielle. Data analysisand
informatics, pages 499-508.





