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the challenges of the future creatively and consciously, and how they are relevant in schools in 
relation to the emerging enabling technologies of Industry 4.0. STEAM disciplines enable to 
increase the digital competences of citizens and increase access to digital tools and services, 
especially for vulnerable social groups. In this sense, STEAM disciplines have a close link to the 
NRRP (National Recovery and Resilience Plan) as it has Mission 1 (digitisation, innovation, 
competitiveness, culture and tourism) and Mission 4 education and research. In this regard, it also 
introduced Robocom, a tailor-made kit for primary and secondary schools to enhance the 
educational offer through the use of innovative technologies such as virtual and augmented 
reality, metaverse, IoT, artificial intelligence and haptic technology.  

The STEAM disciplines and Robocom fully espouse the two NRRP missions and are among 
the most innovative responses to the many projects being carried out by public administrations 
between now and 2026. Resilient tools that enable public bodies to have innovative solutions for 
communities and schools to have state-of-the-art equipment and technology. Improved early 
childhood education and care systems, as well as the skills of the entire population, including 
digital skills that enable the development of a social policy for new generations, children and 
young people. These solutions include the transversal priorities of the NRRP, i.e. the protection 
and enhancement of young people, overcoming territorial divides (south) and increasing 
awareness of accessibility for all possible users.  

A tool, Robocom, that promotes digital transformation and the production and training 
processes, supporting investments for the innovation of Italy, today and tomorrow. Finally, the 
survey indicates a high awareness of STEAM disciplines and the metaverse among respondents, 
as well as a general knowledge of the UN Agenda 2030 goals. The 96% believe that STEAM and 
metaverse can contribute to the achievement of these goals. Respondents associate STEAM and 
metaverse with Goal 4 (87.5%), and with Goal 9 (70.8%). Overall, the results suggest a positive 
perception of the potential impact of STEAM disciplines and the metaverse on the achievement of 
several 2030 Agenda goals. 
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1. Introduction and theoretical framework 
The exponential increase in complex and dystopian phenomena of environmental nature is 

rapidly spreading within territories, endangering the overall global population and ecosystem. 
Governments, local authorities, and scientists believe that if policies are not implemented 
immediately, dangerous effects could arise, jeopardizing human safety (Xu et al. 2020). In this 
context, proper planning becomes fundamental to counteract or prevent the effects of the ongoing 
climate impacts and those that could further increase in the future. Nevertheless, it cannot be 
adopted without a careful analysis of past and present information, aiming to avoid future threats. 
The complexity of the territorial structure is a multifaceted and intricate challenge that confronts 
planners and policymakers. It encompasses several interrelated factors, including geographical 
features, land-use patterns, infrastructure development, environmental considerations, socio-
economic dynamics, and the aspirations of the community (Faludi, 2000). It follows, therefore, that 
specific approaches must be developed to achieve future objectives.  

The study of futures remains an important aspect within the research line of futures studies (FS) 
with the aim of identifying hypothetical scenarios to act in the present to counteract or facilitate, 
respectively, future threats or opportunities (Kosow and Gaßner, 2008). In particular, scenarios can 
be considered as “[…] an internally consistent view of what the future might turn out to be – not a 
forecast, but one possible future outcome” (Porter, 1985). In other terms, the ultimate aim is not to 
predict a future event but to envision different futures to better manage present policies. In the 
spatial context, scenarios are predominantly crafted using spatial statistical models, which prove 
highly valuable in examining spatial data, detecting patterns, and making informed decisions 
regarding the studied phenomena. However, in FS, such models are often challenging to adopt for 
the following reasons: 1) Data availability: they require a substantial amount of data that is often 
either unavailable or only partially present for small areas. 2) Prediction: models produce forecasts, 
which have long been eschewed in the realm of foresight due to the inherent impossibility of 
attaining a singular view of the future. Over time, a transition occurred from the conventional 
approach of forecasting (which leaves no room for manoeuvring in changing the future) to 
embracing the exploration of multiple potential futures through the lens of foresight (Martin, 1995).  

Among the many methods used to develop scenarios, mixed-methods remain a valid solution in 
order to have both a quantitative and qualitative perspective. Specifically, in this paper, we refer to 
the method proposed by Di Zio et al. (2017), namely the Real-Time Spatial Delphi (RTSD). RTSD 
is a customized approach combining the Real-Time Delphi (Gordon and Pease, 2006) and Spatial 
Delphi (Di Zio and Pacinelli, 2011), specifically designed to aid in foresight and decision-making. 
It leverages Geographic Information Systems (GIS) and multiple spatial technologies to facilitate 
expert communication and collaboration within a virtual environment with the final aim to obtain a 
convergence of opinions on the territory. In this process, experts’ judgments become fundamental, 
both in combination with statistical models and for facilitating final decisions. RTSD in fact, solves 
one of the main problems of the traditional version of the Delphi method (Linstone and Turoff, 
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1975), namely the lack of spatial references in the process. In the scientific literature, RTSD found 
several applications in various research areas, including urban security and decorum (Di Zio et al. 
2017), health, air quality, and energy (Castillo et al. 2017). Recently, Calleo et al. (2023), introduced 
for the first time the concept of “Delphi-based spatial scenarios” through an application in the 
climate change context, combining RTSD and the scenario method proposed by Bishop et al. (2007). 

In this paper, the overall objective is to continue this line of research, providing innovation in 
the method by adopting a hybrid approach, combining RTSD and Artificial Intelligence (AI). In 
particular, since RTSD facilitates expert consensus-building on geographical locations, the final 
outputs are judgments expressed in the form of geographic coordinates (𝑥𝑥, 𝑦𝑦 ), with a circle 
representing the consensus achieved―analogous to the interquartile range (𝐼𝐼𝐼𝐼𝐼𝐼) of the classical 
Delphi procedure―and possible textual comments. However, the outputs produced are not in the 
form of scenarios and do not provide a narrative or a picture of the plausible future reality. With the 
rise of AI models, different methods can be used to visualize specific outputs starting from general 
inputs, including Generative Adversarial Networks (GANs) and Text-to-Image (T2I) models. 
Overall, this paper proposes to: 

1. 𝑶𝑶𝟏𝟏: combining Real-Time Spatial Delphi and Text-to-Image models to have a real vision, 
in the form of images, of the experts’ consensus on the territory. 

2. 𝑶𝑶𝟐𝟐 : exploring the capacity of images to foster consciousness and facilitate informed 
policy-making choices. 

3. 𝑶𝑶𝟑𝟑: developing a new hybrid method useful in the visioning phase of scenario planning 
(Bishop et al. 2007). 

To showcase our novel method, we involve a panel of 26 experts in the process, asking to 
evaluate plausible impacts of climate change in 2050 for the city of Dublin, adopting a “Real-Time 
Geo-Spatial Consensus System (RT-GSCS – www.rtgscs.com, see Calleo et al. 2023). The 
judgments expressed by the experts in the form of geographic coordinates and textual comments 
within the consensus circle are implemented in a T2I tool (Adobe Firefly, www.firefly.adobe.com) 
in order to visualize the future impacts. By embracing this innovative approach, policymakers and 
experts can enhance the visualization of proposed policies, leading to a more effective assessment 
of their potential impacts with heightened accuracy. 

2. Materials and methods 
The method proposed in this paper combines RTSD and Text-to-Image models with the aim of 

developing future scenarios of possible impacts in 2050 for the city of Dublin and visualising 
renderings of possible threats in reality. To meet the research objective, we adopt the method 
proposed by Calleo et al. (2023) implementing it with an additional phase where AI is adopted 
(visioning phase).  

The method is composed of the following phases:  
1) Framing: where desk research is performed. Specifically, we develop the methodology of 

the study, acquiring spatial data available, and the area of interest in Dublin city. The city of Dublin 
is part of the SCORE H2020 EU project and is facing multiple challenges posed by coastal flooding 
in the upcoming years. For these reasons, we want to explore the climate impacts in a reasonable 
time horizon, identified as 2050.  

2) Scanning: in this phase, a list of key drivers is extracted. Usually, in the traditional version 
of the Delphi method, this involves workshops and focus groups with experts, however, in our case, 
to speed up the procedure, we extract the main drivers from the project proposal since the drivers 
have been already refined by a group of researchers. In our study we identify six main hazards 
possibly affecting the future of Dublin in 2050: coastal flooding, land flooding, landslides, heatwave, 
storm surge, and coastal erosion. From these drivers, we can formulate the questions to be posed to 
our panel: 𝐼𝐼𝐼𝐼1: “Thinking about 2050, what area will be most at risk of flooding?” 𝐼𝐼𝐼𝐼2: “Thinking 
about 2050, what area will be most at risk of erosion?” 𝐼𝐼𝐼𝐼3: “Thinking about 2050, what area will 

be most affected by extreme events?” Once we have a list of questions validated by the research 
team, in terms of transparency and clarity, we can proceed with the upload to the platform (RT-
GSCS). The chosen panel adheres to the fundamental principles of the traditional Delphi method 
(Calleo and Pilla, 2023), considering the diverse range of expertise among the participating experts. 
In fact, we select a cohort of experts as part of two main categories: i) Internal experts: members of 
the project (SCORE H2020), including academics, stakeholders, and local authorities. ii) External 
experts: with a strong level of expertise and strong professional experience, including 
representatives from companies, local and governmental authorities, and NGO members. We 
contacted 12 internal experts and 50 external experts, and out of these 𝐸𝐸 = 26 experts agreed to 
participate, including 6 internal and 20 externals.  

3) Forecasting: in this phase, the Real-Time Spatial Delphi survey is performed. We sent a 
registration form to each panellist by email, including technical guidelines to access the platform. 
To pursue the objectives of this paper, we adopt RT-GSCS, a web-based open platform developed 
in 2023 (Calleo et al. 2023), to achieve a spatial convergence of opinions among panellists, with 
multiple tools including spatial analysis and real-time algorithms. Once the experts successfully 
register to the platform, the exercise can start. In this case, the experts can select the questions from 
a sidebar and answer by placing one or more points on the map. From this point, an automatic circle 
appears, moving, shrinking, and expanding in real time based on the anonymous responses from 
other experts. The experts have the option to justify their judgments at any time by providing 
comments. The statistical algorithm implemented in the platform is suggested by Di Zio and 
Pacinelli (2011) and aims to obtain convergence of opinions on the territory. Following this logic, 
spatial convergence is achieved by considering a geometric element identified by a circle 𝐶𝐶, the 
smallest among all the potential circles. In this case,  𝐶𝐶  includes 50% of the 𝑁𝑁 judgments – with 
𝑁𝑁 ≥ 𝐸𝐸, since each expert can give more than one point for each question – (analogue of the 𝐼𝐼𝐼𝐼𝐼𝐼 
of the traditional Delphi). Once the experts place one or more points on the map, we have a vector 
of judgments (𝑛𝑛�, 𝑛𝑛�, . . . , 𝑛𝑛� ) for each question, where each 𝑛𝑛�  is in the form of geographical 
coordinates (𝑥𝑥, 𝑦𝑦). The main aim of the algorithm is to find a minimum area 𝐴𝐴�  of a circle 𝐶𝐶� 
covering half of those points 𝐴𝐴� ⊇ 𝑇𝑇(� �⁄ ), where 𝑇𝑇(� �⁄ ) denotes a set containing 50% of the 𝑁𝑁 
points. Nevertheless, since there are an infinite number of circles (𝐶𝐶�) that satisfy these conditions, 
we have the constraint that 𝐶𝐶� must have its centre in one of the 𝑁𝑁 points. Hence, for each question 
the algorithm determines a vector 𝐴𝐴 = 𝐴𝐴�, 𝐴𝐴�, 𝐴𝐴�, . . . , 𝐴𝐴� where 𝐴𝐴� represents the area of a circle 
containing 50% of the 𝑁𝑁 points and centred at point 𝑛𝑛�. Then, 𝑚𝑚𝑚𝑚𝑛𝑛(𝐴𝐴) – the smallest among all 
those circles – corresponds to the geo-consensus. With this approach, we have two types of final 
outcomes: i) Geographical results: the judgments represented in an interactive map. ii) Non-
geographical results: the spatial and textual results. Geographical results offer an instant 
visualization, however, they do not depict the specific process of convergence. For this reason, the 
spatial Delphi (Di Zio and Pacinelli, 2011) involves the calculation of three main indicators to 
evaluate spatial data.  𝑀𝑀� = 𝐹𝐹𝐶𝐶(𝑘𝑘𝑚𝑚�) corresponds to the final circle (𝐹𝐹𝐶𝐶) area in 𝑘𝑘𝑚𝑚� useful for 
the identification of the portion of the territory identified. Nonetheless, this measure is absolute and 
does not consider the study area boundaries and the size of the initial circle. To address this 
challenge, we also consider as second indicator: 𝑀𝑀� = 1 − ��

�
, calculated as the ratio between the 

final circle’s area (𝐹𝐹𝐶𝐶) and the surface (𝑆𝑆) of Dublin (𝑆𝑆 = 117.8 𝑘𝑘𝑚𝑚�). This indicator illustrates 
the level of geo-consensus, and the closer the measure is to 1, the smaller the consensus circle is 
relative to the surface. The third indicator, measures a dynamic process of the spatial convergence: 
𝑀𝑀� = ��

��
∙ 100, where 𝐼𝐼𝐶𝐶 is the initial circle area (set a priori as 50 𝑘𝑘𝑚𝑚�), and the higher the value 

(closer to 100%), the poorer the convergence of opinions; conversely, the closer it is to zero, the 
stronger the convergence. Since our process is in real-time, to end the exercise we must take into 
consideration a stopping criterion, identified in the literature as stability over time (von der Gracht, 
2012). For this reason, in our case, we perform time series analysis, and we end the exercise when 
there is not a significant variation in the total distribution of the 𝑁𝑁 points (usually under 5% of the 
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points). 
4) Visioning: the novelty of the method is implemented in this phase. When we obtain the final 

results, we identify – for this preliminary study – the centre of the final circle area (𝐴𝐴�) of each 
scenario, but any other location inside the circle of consensus could be used. Currently, the point 
coordinates of 𝐴𝐴� are imported into Google Street View (Google, n.d.) and the related real image of 
the examined area, is considered as input for our text-to-image model. In this instance, Adobe 
Firefly is employed as an artificial intelligence tool capable of generating images from textual inputs. 
This model adopts Generative Adversarial Networks (GANs) consisting of two neural networks: a 
Generator (𝐺𝐺), responsible for generating images, and a Discriminator (𝐷𝐷), which differentiates 
between real and counterfeit images through an adversarial process. At this stage, we bring the 
corresponding real image for each scenario into the model using the “Generative fill” tool. We then 
proceed to select the Regions of Interest (ROI), which represent specific areas of the image where 
the AI performs the generation process from the specific text input. Once the ROI has been 
identified we used a textual prompt to generate the modified image: for Sc.1 “Generate a flooded 
road”, for Sc.2 “Generate a coastal erosion”, for Sc.3 “Generate extreme weather condition” (for 
Sc. 3 given the general nature of the prompt, the ROI in the image is more expansive and 
encompassing). Ultimately, as a result, the T2I model generates a modified image based on the 
provided prompt. This capability can be exceptionally valuable for envisioning future 
events/scenarios and raising awareness among experts and the general public in order to develop 
efficient policies in the present. 

3. Results and discussion 
The study successfully addressed the research objectives, yielding 3 main spatial scenarios. It 

officially ran from November 1, 2022, to December 5, 2022, following a double stability check. 
For 𝑅𝑅𝑅𝑅1, 58 expert judgments with 13 comments were collected. 𝑅𝑅𝑅𝑅2 resulted in 54 judgments 
and 16 comments, while 𝑅𝑅𝑅𝑅3  recorded 40 points and 11 comments. The experts achieved a 
substantial reduction in the initial circles, exceeding 99% in all final results (referenced as 𝑀𝑀� in 
Tab. 1), indicating a remarkable level of convergence. In both Sc.1 and Sc.2, the initial circle 
underwent significant reduction, with 𝑀𝑀� values of 0.993 and 0.999, respectively. The initial circle 
of Sc.1 measured 8.24 𝑘𝑘𝑘𝑘� and decreased to 0.77 𝑘𝑘𝑘𝑘�, while Sc.2 started at 3.25 𝑘𝑘𝑘𝑘� and reduced 
to 0.15 𝑘𝑘𝑘𝑘�. In the case of Sc.3, the initial circle had a smaller size of 2.92 𝑘𝑘𝑘𝑘�, and it was 
ultimately reduced to 0.54 𝑘𝑘𝑘𝑘� , representing a reduction of 0.995, as indicated by 𝑀𝑀� . In a 
conventional Delphi study, the Interquartile Range (𝐼𝐼𝑅𝑅𝑅𝑅) is often used as a measure of consensus 
achieved when the 𝐼𝐼𝑅𝑅𝑅𝑅 is less than 20% of the measurement scale employed. Likewise, in the 
Spatial Delphi method, consensus can be considered achieved when 𝑀𝑀� is less than or equal to 20%. 
In our study, the 𝑀𝑀� values of 9.34%, 4.61%, and 18.49% for the three research questions indicate 
that the experts achieved a high level of consensus for Sc.1 and Sc.2. However, for Sc.3 there was 
a slightly lower level of consensus due to the presence of multiple clusters on the territory. 

Table 1. Measures of spatial consensus 

Scenario 𝑆𝑆 (𝑘𝑘𝑘𝑘�)  𝐼𝐼𝐼𝐼 
(𝑘𝑘𝑘𝑘�) 

𝐹𝐹𝐼𝐼 (𝑘𝑘𝑘𝑘�) 𝑀𝑀� 𝑀𝑀� 𝑀𝑀� N 

Sc.1 117.8 8.24 0.77 0.993 9.34% 58 
Sc.2 117.8 3.25 0.15 0.999 4.61% 54 
Sc.3 117.8 2.92 0.54 0.995 18.49% 50 

As stated in Section 2, while consensus is an important aspect when determining the 
survey’s stopping criterion, it is not the sole factor, and stability also holds significance. Overall, 
Sc.1 experienced multiple changes before stabilizing from the 18th to the 20th day. 
Nevertheless, after validation, three additional changes occurred, highlighting the contentious 

flooding issue in the Dublin area and uncertainty regarding appropriate solutions. Sc.2 
demonstrated the strongest consensus, remaining stable from the 10th day and only undergoing 
two changes during validation, signifying agreement on future spatial erosion dynamics. Sc.3 
exhibited significant changes in the circle’s radius within the first 15 days, reflecting debates 
about potential extreme event scenarios but stabilizing after the 18th day. Once we illustrated 
the dynamic process of convergence, spatial analysis is performed adopting ArcGIS PRO (Fig. 
1). 

Figure 1. Delphi-based spatial scenarios 

Sc.1 depicts that by 2050, the central part of Dublin city, between the banks of the River 
Liffey, faces the highest threat of flooding. Experts are concerned about potential harm to 
buildings, infrastructure, essential services, the environment, and even loss of life. Moving to 
Sc.2, eastern coastal regions of Dublin are identified as most susceptible to erosion by 2050. 
Coastal erosion here could lead to the loss of valuable real estate, infrastructure, risks to public 
safety due to unstable cliffs, and negative impacts on tourism and fishing. Regarding Sc.3, the 
central area of Dublin is seen as most likely to be impacted by various extreme events like 
storms, floods, and heat waves. Following the experts’ comments, consequences include 
damage to buildings, infrastructure, disruptions to daily life, threats to public safety, strain on 
emergency services, healthcare, and environmental implications affecting local ecosystems and 
habitats.  

The results provide immediate insights from the experts’ judgments; however, they are 
spatial representations and may not fully convey the reality and magnitude of the threat. Policy 
makers and citizens might not be aware of the potential implications of future threats. To 
address this, we generated plausible visual scenarios adopting T2I models, with the aim of 
providing a clearer understanding of the possible outcomes. 

Figure 2. Results from the Text-to-Image model 
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points). 
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Sc. 3 given the general nature of the prompt, the ROI in the image is more expansive and 
encompassing). Ultimately, as a result, the T2I model generates a modified image based on the 
provided prompt. This capability can be exceptionally valuable for envisioning future 
events/scenarios and raising awareness among experts and the general public in order to develop 
efficient policies in the present. 
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The generated images are highly significant and offer a clear and well-defined 
representation of potential future scenarios. In Sc.1, the ROI is replaced by a visually suggestive 
depiction of a flooded road. Likewise, for Sc.2, we illustrate the erosion phenomena affecting 
the road. Lastly, Sc.3 demonstrates the impact of extreme events, resulting in the flooding of 
the road and disrupting transportation. 

4. Conclusions and future works 

This paper proposed a novel hybrid method combining Real-Time Spatial Delphi and 
Artificial Intelligence to represent experts’ judgments. We employed T2I models to generate 
plausible visual scenarios, providing clearer insights into potential future threats. These visually 
suggestive representations offer valuable information to policy makers and citizens, helping 
them understand the magnitude and implications of the identified threats. However, it is 
essential to emphasize that these images are hypothetical visions designed to raise awareness 
among citizens and policymakers, encouraging them to take appropriate actions in the present. 
In future works, this method can be used to generate realistic images of concrete policies to be 
adopted in the present in order to facilitate the work of policymakers. 
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